textacy Documentation
Release 0.10.1

Burton DeWilde

Aug 29, 2020

CONTENTS

1 features 3
2 links 5
3 maintainer 7
4 contents 9
4.1 Installation e e e e e e e 9
42 Quickstart L e e e e e e e e e e 10
43 APIReference e e 17
4.4 ChangesS . . . v v v i e e e e e e e e e e e e e e e e e e 124
Python Module Index 151
Index 153

textacy Documentation, Release 0.10.1

textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the high-
performance spaCy library. With the fundamentals — tokenization, part-of-speech tagging, dependency parsing, etc.
— delegated to another library, textacy focuses primarily on the tasks that come before and follow after.

CONTENTS 1

https://travis-ci.org/chartbeat-labs/textacy
https://github.com/chartbeat-labs/textacy/releases
https://pypi.python.org/pypi/textacy
https://anaconda.org/conda-forge/textacy

textacy Documentation, Release 0.10.1

2 CONTENTS

CHAPTER
ONE

FEATURES

Access spaCy through convenient methods for working with one or many documents and extend its functionality
through custom extensions and automatic language identification for applying the right spaCy pipeline for the
text

Download datasets with both text content and metadata, from Congressional speeches to historical literature to
Reddit comments

Easily stream data to and from disk in many common formats
Clean, normalize, and explore raw text — before processing it with spaCy

Flexibly extract words, n-grams, noun chunks, entities, acronyms, key terms, and other elements of interest from
processed documents

Compare strings, sets, and documents by a variety of similarity metrics
Tokenize and vectorize documents then train, interpret, and visualize topic models

Compute a variety of text readability statistics, including Flesch-Kincaid grade level, SMOG index, and multi-
lingual Flesch Reading Ease

. and more!

textacy Documentation, Release 0.10.1

4 Chapter 1. features

CHAPTER
TWO

LINKS

Download: https://pypi.org/project/textacy
Documentation: https://textacy.readthedocs.io
Source code: https://github.com/chartbeat-labs/textacy

Bug Tracker: https://github.com/chartbeat-labs/textacy/issues

https://pypi.org/project/textacy
https://textacy.readthedocs.io
https://github.com/chartbeat-labs/textacy
https://github.com/chartbeat-labs/textacy/issues

textacy Documentation, Release 0.10.1

6 Chapter 2. links

CHAPTER
THREE

MAINTAINER

Howdy, y’all.

¢ Burton DeWilde (burton @chartbeat.com)

mailto:burton@chartbeat.com

textacy Documentation, Release 0.10.1

8 Chapter 3. maintainer

CHAPTER
FOUR

CONTENTS

4.1 Installation

The simplest way to install textacy is via pip:

’$ pip install textacy

or conda:

’$ conda install -c conda-forge textacy

If you prefer — or are obliged — to do things the hard way, you can download and unzip the source tar.gz from
PyPi, then install manually:

’$ python setup.py install

4.1.1 Dependencies

Given the breadth of functionality, textacy depends on a number of other Python packages. Most of these are
typical components in the PyData stack, but a few are certainly more niche. One heavy dependency has been made
optional.

Specifically: To use visualization functionality, you’ll need matplotlib installed; you can do so via pip
install textacy([viz] orpip install matplotlib.

4.1.2 Downloading Data

For most uses of textacy, language-specific model data in spaCy is required. Fortunately, spaCy makes the process
of getting this data easy and flexible; just follow the instructions in its docs, which also includes a list of currently-
supported languages and their models.

Note: If you install specific versions of a given language’s model data (e.g. “en_core_web_sm” instead of just “en”),
you’ll want to create a shortcut link to the corresponding standard two-letter form of the language so that it will work
as expected with textacy’s automatic language identification. For example:

$ python -m spacy download en_core_web_sm
$ python -m spacy link en_core_web_sm en

textacy itself features convenient access to several datasets comprised of thousands of text + metadata records,
as well as a couple linguistic resources. Data can be downloaded via the . download () method on corresponding
dataset/resource classes (see Datasets and Resources for details) or directly from the command line.

https://spacy.io/docs/usage/models
https://spacy.io/usage/models#section-available
https://spacy.io/usage/models#section-available

textacy Documentation, Release 0.10.1

$ python -m textacy download capitol_words
$ python -m textacy download depeche_mood

These commands download and save a compressed json file with ~11k speeches given by the main protagonists of
the 2016 U.S. Presidential election, followed by a set of emotion lexicons in English and Italian with various word
representations. For more information about particular datasets/resources use the info subcommand, or just run

’$ python -m textacy —--help

4.2 Quickstart

First things first: Import the package. Most functionality is available from this top-level import, but we’ll see that
some features require their own imports.

’>>> import textacy

4.2.1 Working with Text

Let’s start with a single text document:

>>> text = (

R "Since the so-called \"statistical revolution\" in the late 1980s and mid,

—1990s, "
"much Natural Language Processing research has relied heavily on machine

—learning. "

.. "Formerly, many language-processing tasks typically involved the direct hand_

—coding "
"of rules, which is not in general robust to natural language variation. "

"The machine-learning paradigm calls instead for using statistical inference "

"to automatically learn such rules through the analysis of large corpora "

"of typical real-world examples."

Note: In almost all cases, textacy (as well as spaCy) expects to be working with unicode text data. Throughout the
code, this is indicated as st r to be consistent with Python 3’s default string type; users of Python 2, however, must be
mindful to use unicode, and convert from the default (bytes) string type as needed.

Before (or in lieu of) processing this text with spaCy, we can do a few things. First, let’s look for keywords-in-context,
as a quick way to assess, by eye, how a particular word or phrase is used in a body of text:

>>> textacy.text_utils.KWIC (text, "language", window_width=35)

1980s and mid 1990s, much Natural Language Processing research has relied hea

n machine learning. Formerly, many language -processing tasks typically involve
s not in general robust to natural language variation. The machine-learning pa

Sometimes, “raw” text is messy and must be cleaned up before analysis; other times, an analysis simply benefits from
well-standardized text. In either case, the textacy.preprocessing sub-package contains a number of functions
to normalize (whitespace, quotation marks, etc.), remove (punctuation, accents, etc.), and replace (URLs, emails,
numbers, etc.) messy text data. For example:

>>> from textacy import preprocessing
>>> preprocessing.normalize_whitespace (preprocessing.remove_punctuation (text)) [:80]
'Since the so called statistical revolution in the late 1980s and mid 1990s much '

10 Chapter 4. contents

textacy Documentation, Release 0.10.1

4.2.2 Make a Doc

Usually, though, we want to work with text that’s been processed by spaCy: tokenized, part-of-speech tagged, parsed,
and so on. Since spaCy’s pipelines are language-dependent, we have to load a particular pipeline to match the text;
when working with texts from multiple languages, this can be a pain. Fortunately, textacy includes automatic language
detection to apply the right pipeline to the text, and it caches the loaded language data to minimize wait time and hassle.
Making a Doc from text is easy:

>>> doc = textacy.make_spacy_doc (text)
>>> doc._.preview
'Doc (85 tokens: "Since the so-called "statistical revolution" in...")'

Under the hood, the text has been identified as English, and the default English-language ("en™") pipeline has been
loaded, cached, and applied to it. If you need to customize the pipeline, you can still easily load and cache it, then
specify it yourself when initializing the doc:

>>> en textacy.load_spacy_lang("en_core_web_sm", disable=("parser",))
>>> doc = textacy.make_spacy_doc (text, lang=en)

>>> doc._.preview

'Doc (85 tokens: "Since the so-called "statistical revolution" in...")'

Oftentimes, text data comes paired with metadata, such as a title, author, or publication date, and we’d like to keep
them together. textacy makes this easy:

>>> metadata = {
"title": "Natural-language processing",
"url": "https://en.wikipedia.org/wiki/Natural-language_processing",
"source": "wikipedia",

}
>>> doc = textacy.make_spacy_doc ((text, metadata))
>>> doc._.meta["title"]
'Natural-language processing'

textacy adds a variety of useful functionality to vanilla spaCy docs, accessible via its ._ “underscore” property.
For example: doc._.preview gives a convenient preview of the doc’s contents, and doc._ .meta returns any
metadata associated with the main text content. Consult the spaCy docs for implementation details.

Note: Older versions of textacy (<0.7.0) used a textacy.Doc class as a convenient wrapper around an underlying
spaCy Doc, with additional functionality available as class attributes and methods. Once spaCy started natively
supporting custom extensions on Doc objects (as well as custom components in language processing pipelines), that
approach was dropped.

4.2.3 Analyze a Doc

There are many ways to understand the content of a Doc. For starters, let’s extract various elements of interest:

>>> list (textacy.extract.ngrams (

c doc, 3, filter_stops=True, filter_punct=True, filter_ nums=False))
[1980s and mid,

Natural Language Processing,

Language Processing research,

research has relied,

heavily on machine,

processing tasks typically,

tasks typically involved,

involved the direct,

(continues on next page)

4.2. Quickstart 11

https://spacy.io/usage/processing-pipelines#custom-components-attributes

textacy Documentation, Release 0.10.1

(continued from previous page)

direct hand coding,

coding of rules,

robust to natural,

natural language variation,

learning paradigm calls,

paradigm calls instead,

inference to automatically,

learn such rules,

analysis of large,

corpora of typical]
>>> list (textacy.extract.ngrams (doc, 2, min_freg=2))
[Natural Language, natural language]
>>> list (textacy.extract.entities(doc, drop_determiners=True))
[late 1980s and mid 1990s]
>>> pattern = textacy.constants.POS_REGEX_PATTERNS["en"] ["NP"]
>>> pattern

'<DET>? <NUM>x (<ADJ> <PUNCT>? <CONJ>?)* (<NOUN>|<PROPN> <PART>?)+'
>>> list (textacy.extract.pos_regex_matches (doc, pattern))
[statistical revolution,

the late 1980s,

mid 1990s,

much Natural Language Processing research,

machine learning,

many language,

tasks,

the direct hand coding,

rules,

natural language variation,

The machine,

paradigm,

statistical inference,

such rules,

the analysis,

large corpora,

typical real-world examples]

We can also identify key terms in a document by a number of algorithms:

>>> import textacy.ke
>>> textacy.ke.textrank (doc, normalize="lemma", topn=10)
[("Natural Language Processing research', 0.059959246697826624),
('natural language variation', 0.04488350959275309),
('direct hand coding', 0.037736661821063354),
("statistical inference', 0.03432557996664981),
('statistical revolution', 0.034007535820683756),
('machine learning', 0.03305919655573349),
('mid 1990', 0.026993994406706995),
('"late 1980', 0.026499549123496648),
('general robust', 0.024835834233545625),
('"large corpora', 0.024322049918545637)]
>>> textacy.ke.sgrank (doc, ngrams=(1, 2, 3, 4), normalize="lower",
[("natural language processing research', 0.31279919999041045),
('direct hand coding', 0.09373747682969617),
('"natural language variation', 0.09229056171473927),
('mid 1990s', 0.05832421657510258),
('machine learning', 0.05536624437146417)]

topn=0.1)

12

Chapter 4. contents

textacy Documentation, Release 0.10.1

Or we can compute various basic and readability statistics:

>>> ts = textacy.TextStats (doc)

>>> ts.n_words, ts.n_syllables, ts.n_chars

(73, 134, 414)

>>> ts.entropy

5.8233192506312115

>>> ts.flesch_kincaid_grade_level, ts.flesch_reading_ ease
(15.56027397260274, 26.84351598173518)

>>> ts.lix

65.42922374429223

Lastly, we can transform a document into a “bag of terms”, with flexible weighting and term inclusion criteria:

>>> bot = doc._.to_bag_of_terms(

. ngrams=(1, 2, 3), entities=True, weighting="count", as_strings=True)

>>> sorted(bot.items (), key=lambda x: x[1], reverse=True) [:15]

[('call', 2),
('statistical', 2),
("machine', 2),
('language' 2),
('rule' 2),
('learn' 2),
('late 1980 and mid 1990', 1),
('revolution' 1),
('late', 1),
('1980', 1),
('mid', 1),

('1990', 1),

('Natural', 1),

('Language', 1),

('"Processing', 1)]

4.2.4 Working with Many Texts

Many NLP tasks require datasets comprised of a large number of texts, which are often stored on disk in one or
multiple files. textacy makes it easy to efficiently stream text and (text, metadata) pairs from disk, regardless of the
format or compression of the data.

Let’s start with a single text file, where each line is a new text document:

I love Daylight Savings Time: It's a biannual opportunity to find and fix obscure
—date-time bugs in your code. Can't wait for next time!

Somewhere between "this is irritating but meh" and "blergh, why haven't I automated,
—this yet?!" Fuzzy decision boundary.

Spent an entire day translating structured data blobs into concise, readable
—sentences. Human language is hard.

In this case, the texts are tweets from my sporadic presence on Twitter — a fine example of small (and boring) data.
Let’s stream it from disk so we can analyze it in textacy:

>>> texts = textacy.io.read_text ('~/Desktop/burton-tweets.txt', lines=True)
>>> for text in texts:

doc = textacy.make_spacy_doc (text)

print (doc._.preview)

(continues on next page)

4.2. Quickstart 13

textacy Documentation, Release 0.10.1

(continued from previous page)

Doc (32 tokens; "I love Daylight Savings Time: It's a biannual o...")
Doc (28 tokens; "Somewhere between "this is irritating but meh" ...")
Doc (20 tokens; "Spent an entire day translating structured data...")

Okay, let’s not actually analyze my ramblings on social media. . .

Instead, let’s consider a more complicated dataset: a compressed JSON file in the mostly-standard “lines” format, in
which each line is a separate record with both text data and metadata fields. As an example, we can use the “Capitol
Words” dataset integrated into textacy (see Datasets for details). The data is downloadable from the textacy-data
GitHub repository.

>>> records = textacy.io.read_json(
"textacy/data/capitol_words/capitol-words-py3.json.gz",

.. mode="rt", lines=True)

>>> for record in records:
doc = textacy.make_spacy_doc ((record["text"], {"title": record["title"]}))
print (doc._.preview)
print ("meta:", doc._.meta)
do stuff...

ce. break
Doc (159 tokens; "Mr. Speaker, 480,000 Federal employees are work...")
meta: {'title': 'JOIN THE SENATE AND PASS A CONTINUING RESOLUTION'}

For this and a few other datasets, convenient Dataset classes are already implemented in textacy to help users get
up and running, faster:

>>> import textacy.datasets # note the import
>>> ds = textacy.datasets.CapitolWords ()
>>> ds.download()
>>> records = ds.records (speaker_name={"Hillary Clinton", "Barack Obama"})
>>> next (records)
('T yield myself 15 minutes of the time controlled by the Democrats.',
{'date': '2001-02-13"',
'congress': 107,
'speaker_name': 'Hillary Clinton',
'speaker_party': 'D',
'title': 'MORNING BUSINESS',
'chamber': 'Senate'})

4.2.5 Make a Corpus

A textacy.Corpus is an ordered collection of spaCy Doc s, all processed by the same language pipeline. Let’s
continue with the Capitol Words dataset and make a corpus from a stream of records. (Note: This may take a few
minutes.)

>>> corpus = textacy.Corpus ("en", data=records)
>>> corpus
Corpus (1240 docs, 857548 tokens)

The language pipeline used to analyze documents in the corpus must be specified on instantiation, but the data added
to it may come in the form of one or a stream of texts, records, or (valid) Doc s.

>>> textacy.Corpus (
textacy.load_spacy_lang("en_core_web_sm", disable=("parser", "tagger")),

(continues on next page)

14 Chapter 4. contents

https://github.com/bdewilde/textacy-data/releases/tag/capitol_words_py3_v1.0%3E
https://github.com/bdewilde/textacy-data/releases/tag/capitol_words_py3_v1.0%3E

textacy Documentation, Release 0.10.1

(continued from previous page)

.. data=ds.texts (speaker_party="R", chamber="House", 1limit=100))
Corpus (100 docs, 31356 tokens)

You can use basic indexing as well as flexible boolean queries to select documents in a corpus:

>>> corpus[—-1]._.preview
'Doc (2999 tokens: "In the Federalist Papers, we often hear the ref...")'
>>> [doc._.preview for doc in corpus[10:15]]

['"Doc (359 tokens: "My good friend from Connecticut raised an issue...")',
'Doc (83 tokens: "My question would be: In response to the discus...")',
'Doc (3338 tokens: "Madam President, I come to the floor today to s...")',

'Doc (221 tokens: "Mr. President, I rise in support of Senator Tho...")
'Doc (3061 tokens: "Mr. President, I thank my distinguished colleag...")

>>> obama_docs = list (corpus.get (lambda doc: doc._.meta["speaker_name"] == "Barack,
—Obama"))

>>> len (obama_docs)

411

It’s important to note that all of the data in a textacy.Corpus is stored in-memory, which makes a number of
features much easier to implement. Unfortunately, this means that the maximum size of a corpus will be bounded by
RAM.

4.2.6 Analyze a Corpus

There are lots of ways to analyze the data in a corpus. Basic stats are computed on the fly as documents are added (or
removed) from a corpus:

>>> corpus.n_docs, corpus.n_sents, corpus.n_tokens
(1240, 34530, 857548)

You can transform a corpus into a document-term matrix, with flexible tokenization, weighting, and filtering of terms:

>>> import textacy.vsm # note the import
>>> vectorizer = textacy.vsm.Vectorizer (
tf_type="linear", apply_1idf=True, idf_type="smooth", norm="12",
.. min_df=2, max_df=0.95)
>>> doc_term_matrix = vectorizer.fit_transform(
(doc._.to_terms_list (ngrams=1, entities=True, as_strings=True)
. for doc in corpus))
>>> print (repr (doc_term_matrix))
<1240x12577 sparse matrix of type '<class 'numpy.float6d'>"
with 217067 stored elements in Compressed Sparse Row format>

From a doc-term matrix, you can then train and interpret a topic model:

>>> import textacy.tm # note the import
>>> model = textacy.tm.TopicModel ("nmf", n_topics=10)
>>> model.fit (doc_term_matrix)
>>> doc_topic_matrix = model.transform(doc_term matrix)
>>> doc_topic_matrix.shape
(1240, 10)
>>> for topic_idx, top_terms in model.top_topic_terms (vectorizer.id_to_term, top_
—n=10) :
print ("topic", topic_idx, ":", " ".Jjoin (top_terms))
topic 0 : New people child work need York bill year school student

(continues on next page)

4.2. Quickstart 15

textacy Documentation, Release 0.10.1

(continued from previous page)

topic 1 : rescind quorum order unanimous consent ask President Mr. |
—Madam objection

topic 2 : dispense reading unanimous consent amendment ask President Mr.
— Madam OFFICER

topic 3 : motion table lay reconsider agree thereto Madam preamble
—intervene print

topic 4 : desire Chamber vote Senators rollcall voter amendment 2313
—regular cloture

topic 5 : amendment pende aside set ask unanimous consent Mr.
—President desk

topic 6 : health care patient Health mental quality child medical
—information coverage

topic 7 : Iraqg war troop iragi Iraqgis policy military american Uu.s.
—force

topic 8 : tax budget cut debt pay deficit $ fiscal billion spending
topic 9 : Senator Virginia yield West Virginia West question thank
—Massachusetts objection time

And that’s just getting started! For now, though, I encourage you to pick a dataset — either your own or one already
included in textacy — and start exploring the data. Most functionality is well-documented via in-code docstrings; to
see that information all together in nicely-formatted HTML, be sure to check out the API Reference.

4.2.7 Working with Many Languages

Since a Corpus uses the same spaCy language pipeline to process all input texts, it only works in a mono-lingual
context. In some cases, though, your collection of texts may contain more than one language; for example, if I
occasionally tweeted in Spanish (si, jse habla espafiol!), the burton-tweets.txt dataset couldn’t be fed in its
entirety into a single Corpus. This is irritating, but there are some workarounds.

If you haven’t already, download spaCy models for the languages you want to analyze — see Installation for details.
Then, if your use case doesn’t require Corpus functionality, you can iterate over the texts and only analyze those for
which models are available:

>>> for text in texts:
try:
doc = textacy.make_spacy_doc (text)
except OSError:
continue
do stuff...

When the 1ang param is unspecified, textacy tries to auto-detect the text’s language and load the corresponding
model; if that model is unavailable, spaCy will raise an OSError. This try/except also handles the case where
language detection fails and returns, say, “un” for “unknown”.

It’s worth noting that, although spaCy has statistical models for annotating texts in only 10 or so languages, it supports
tokenization in dozens of other languages. See https://spacy.io/usage/models#languages for details. You can load such
languages in textacy via textacy.load_spacy_lang(langstr, allow_blank=True).

If you do need a Corpus, you can split the input texts by language into distinct collections, then instantiate monolin-
gual corpora on those collections. For example:

>>> en_corpus = textacy.Corpus (
"en", data=(
text for text in texts
if textacy.lang_utils.identify_lang(text)

uenu)

(continues on next page)

16 Chapter 4. contents

textacy Documentation, Release 0.10.1

(continued from previous page)

)

>>> es_corpus = textacy.Corpus (

"es", data=(
text for text in texts
if textacy.lang_ utils.identify_lang(text) == "es")

Both of these options are less convenient than I’d like, but hopefully they get the job done.

4.3 API Reference

4.3.1 Lang, Doc, Corpus

textacy.spacier.core: Convenient entry point for loading spaCy language pipelines and making spaCy docs.

textacy.spacier.core.load_spacy_lang (name: Union[str, pathlib.Path], disable: Op-
tional[Tuple[str, ...]] = None, allow_blank: bool =

False) — spacy.language.Language
Load a spaCy Language: a shared vocabulary and language-specific data for tokenizing text, and (if available)

model data and a processing pipeline containing a sequence of components for annotating a document. An LRU
cache saves languages in memory for quick reloading.

>>> en_nlp = textacy.load_spacy_lang("en")

>>> en_nlp = textacy.load_spacy_lang("en_core_web_sm")

>>> en_nlp = textacy.load_spacy_lang("en", disable=("parser",))
>>> textacy.load_spacy_lang("ar")

OSError: [E050] Can't find model 'ar'. It doesn't seem to be a shortcut link, a_
—Python package or a valid path to a data directory.

>>> textacy.load_spacy_lang("ar", allow_blank=True)

<spacy.lang.ar.Arabic at 0x126418550>

Parameters

* name — spaCy language to load. Could be a shortcut link, full package name, or path to
model directory, or a 2-letter ISO language code for which spaCy has language data.

* disable — Names of pipeline components to disable, if any.

Note: Although spaCy’s API specifies this argument as a list, here we require a tuple.
Pipelines are stored in the LRU cache with unique identifiers generated from the hash of the
function name and args — and lists aren’t hashable.

* allow_blank — If True, allow loading of blank spaCy Language s; if False, raise an
OSError if a full processing pipeline isn’t available. Note that spaCy Doc s produced by
blank languages are missing key functionality, e.g. POS tags, entities, sentences.

Returns A loaded spaCy Language.
Raises
* OSError —

* ImportError —

4.3. API Reference 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#ImportError

textacy Documentation, Release 0.10.1

See also:

* https://spacy.io/api/top-level#spacy.load
* https://spacy.io/api/top-level#spacy.blank

textacy.spacier.core.make_spacy_doc (data: Union[str, Tuple[str, dict], spacy.tokens.doc.Doc],
lang: Union[str, Callable[[str], str],
spacy.language.Language] = <bound method Langlden-
tifier.identify_lang of <textacy.lang_utils.Langldentifier

object>>) — spacy.tokens.doc.Doc
Make a spacy.tokens.Doc from valid inputs, and automatically load/validate spacy.language.

Language pipelines to process data.

Make a Doc from text:

>>> text = "To be, or not to be, that is the question."

>>> doc = make_spacy_doc (text)

>>> doc._.preview

'Doc (13 tokens: "To be, or not to be, that is the question.")'

Make a Doc from a (text, metadata) pair, aka a “record’:

>>> record = (text, {"author": "Shakespeare, William"})

>>> doc = make_spacy_doc (record)

>>> doc._.preview

'Doc (13 tokens: "To be, or not to be, that is the question.")'
>>> doc._.meta

{'"author': 'Shakespeare, William'}

Specify the language / Language pipeline used to process the text — or don’t:

>>> make_spacy_doc (text)

>>> make_spacy_doc (text, lang="en")

>>> make_spacy_doc (text, lang="en_core_web_sm")

>>> make_spacy_doc (text, lang=textacy.load_spacy_lang("en"))
>>> make_spacy_doc (text, lang=textacy.lang_utils.identify_lang)

Ensure that an already-processed Doc is compatible with 1ang:

>>> spacy_lang = textacy.load_spacy_lang("en")
>>> doc = spacy_lang(text)

>>> make_spacy_doc (doc, lang="en'")

>>> make_spacy_doc (doc, lang="es")

ValueError: lang of spacy pipeline used to process document ('en') must be the

—same as ~lang® ('es')
Parameters

* data — Make a spacy.tokens.Doc from a text or (text, metadata) pair. If already a
Doc, ensure that it’s compatible with 1ang to avoid surprises downstream, and return it
as-is.

* lang — Language with which spaCy processes (or processed) data.

If known, pass a standard 2-letter language code (e.g. “en”), or the name of a spacy lan-
guage pipeline (e.g. “en_core_web_md”), or an already-instantiated spacy.language.

18 Chapter 4. contents

https://spacy.io/api/top-level#spacy.load
https://spacy.io/api/top-level#spacy.blank

textacy Documentation, Release 0.10.1

Language object. If not known, pass a function that takes unicode text as input and outputs
a standard 2-letter language code.

A given / detected language string is then used to instantiate a corresponding Language
with all default components enabled.

Returns Processed spaCy Doc.
Raises
e TypeError —
* ValueError —
textacy.corpus: Class for working with a collection of spaCy Doc s. Includes functionality for easily adding,
getting, and removing documents; saving to / loading their data from disk; and tracking basic corpus statistics.

class textacy.corpus.Corpus (lang: Union[str, spacy.language.Language], data: Op-
tional[Union[str, spacy.tokens.doc.Doc, Tuple[str, dict], Iter-
able[str], Iterable[spacy.tokens.doc.Doc], Iterable[Tuple[str,

dict]]]] = None)
An ordered collection of spacy.tokens.Doc, all of the same language and sharing the same spacy.

language.Language processing pipeline and vocabulary, with data held in-memory.

Initialize from a language / Language and (optionally) one or a stream of texts or (text, metadata) pairs:

>>> ds = textacy.datasets.CapitolWords ()

>>> records = ds.records (limit=50)

>>> corpus = textacy.Corpus ("en", data=records)
>>> print (corpus)

Corpus (50 docs, 32175 tokens)

Add or remove documents, with automatic updating of corpus statistics:

>>> texts = ds.texts(congress=114, limit=25)

>>> corpus.add(texts)

>>> corpus.add("If Burton were a member of Congress, here's what he'd say.")

>>> print (corpus)

Corpus (76 docs, 55906 tokens)

>>> corpus.remove (lambda doc: doc._.meta.get ("speaker_name") == "Rick Santorum")
>>> print (corpus)

Corpus (61 docs, 48567 tokens)

Get subsets of documents matching your particular use case:

>>> match_func = lambda doc: doc._.meta.get ("speaker_name") == "Bernie Sanders"
>>> for doc in corpus.get (match_func, limit=3):
print (doc._.preview)

Doc (159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")
Doc (336 tokens: "Mr. Speaker, I thank the gentleman for yielding..."
Doc (177 tokens: "Mr. Speaker, if we want to understand why in th...")

Get or remove documents by indexing, too:

>>> corpus[0]._.preview

'Doc (159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")'

>>> [doc._.preview for doc in corpus[:31]]

['"Doc (159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")',
'Doc (219 tokens: "Mr. Speaker, a relationship, to work and surviv...")',

'Doc (336 tokens: "Mr. Speaker, I thank the gentleman for yielding...")']

(continues on next page)

4.3. API Reference 19

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

textacy Documentation, Release 0.10.1

(continued from previous page)

>>> del corpus|[:5]
>>> print (corpus)
Corpus (56 docs, 41573 tokens)

Compute basic corpus statistics:

>>> corpus.n_docs, corpus.n_sents, corpus.n_tokens

(56, 1771, 41573)

>>> word_counts = corpus.word_counts (as_strings=True)

>>> sorted(word_counts.items (), key=lambda x: x[1l], reverse=True) [:5]

[("-PRON-', 2553), ('people', 215), ('year', 148), ('Mr.', 139), ('s', 137)]
>>> word_doc_counts = corpus.word_doc_counts (weighting="freq", as_strings=True)
>>> sorted(word_doc_counts.items (), key=lambda x: x[1l], reverse=True) [:5]
[("-PRON-', 0.9821428571428571),

'Mr.', 0.7678571428571429),

'President', 0.5),

'people', 0.48214285714285715),

(
(
(
('need', 0.44642857142857145)]

Save corpus data to and load from disk:

>>> corpus.save ("~/Desktop/capitol_words_sample.bin.gz")

>>> corpus = textacy.Corpus.load("en", "~/Desktop/capitol words_sample.bin.gz")
>>> print (corpus)

Corpus (56 docs, 41573 tokens)

Parameters

* lang — Language with which spaCy processes (or processed) all documents added to the
corpus, whether as data now or later.

Pass a standard 2-letter language code (e.g. “en”), or the name of a spacy language pipeline
(e.g. “en_core_web_md”), or an already-instantiated spacy . language . Language ob-
ject.

A given / detected language string is then used to instantiate a corresponding Language
with all default components enabled.

e data (obj or Iterable[obj]) — One or a stream of texts, records, or spacy.
tokens.Doc s to be added to the corpus.

See also:

Corpus.add()

lang
spacy_lang
docs
n_docs
n_sents
n_tokens

add (data: Union/[str, spacy.tokens.doc.Doc, Tuple[str, dict], Iterable[str], Iter-
able[spacy.tokens.doc.Doc], Iterable[Tuple[str, dict]]], batch_size: int = 1000, n_process:
int = 1) — None

20

Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.10.1

Add one or a stream of texts, records, or spacy .tokens.Doc s to the corpus, ensuring that all process-
ing is or has already been done by the Corpus. spacy._ lang pipeline.

Parameters
* data -
* batch_size — Number of texts to buffer when processing with spaCy.

* n_process — Number of parallel processors to run when processing. If -1, this is set to
multiprocessing.cpu_count ().

Note: This feature is only available in spaCy 2.2.2+, and only applies when data is a
sequence of texts or records.

See also:

* Corpus.add_text ()

* Corpus.add_texts ()

* Corpus.add _record()

* Corpus.add_records ()

* Corpus.add_doc ()

* Corpus.add_docs ()
add text (text: str) — None

Add one text to the corpus, processing it into a spacy . tokens.Doc using the Corpus. spacy_lang
pipeline.

Parameters text (str)-—

add_texts (texts: Iterable[str], batch_size: int = 1000, n_process: int = 1) — None
Add a stream of texts to the corpus, efficiently processing them into spacy.tokens.Doc s using the
Corpus.spacy_lang pipeline.

Parameters
* texts — Sequence of texts to process and add to corpus.
* batch_size — Number of texts to buffer when processing with spaCy.

* n_process — Number of parallel processors to run when processing. If -1, this is set to
multiprocessing.cpu_count ().

Note: This feature is only available in spaCy 2.2.2+.

add_record (record: Tuple[str, Dict[Any, Any]]) — None
Add one record to the corpus, processing it into a spacy.tokens.Doc using the Corpus.
spacy_lang pipeline.

Parameters record —

add_recoxds (records: Iterable[Tuple[str, dict]], batch_size: int = 1000, n_process: int = 1) — None
Add a stream of records to the corpus, efficiently processing them into spacy.tokens.Doc s using the
Corpus.spacy_lang pipeline.

Parameters

4.3.

API Reference 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.10.1

* records — Sequence of records to process and add to corpus.
* batch_size — Number of texts to buffer when processing with spaCy.

* n_process — Number of parallel processors to run when processing. If -1, this is set to
multiprocessing.cpu_count ().

Note: This feature is only available in spaCy 2.2.2+.

add_doc (doc: spacy.tokens.doc.Doc) — None

Add one spacy.tokens.Doc to the corpus, provided it was processed using the Corpus.
spacy_lang pipeline.

Parameters doc —

add_docs (docs: Iterable[spacy.tokens.doc.Doc]) — None
Add a stream of spacy .tokens.Doc sto the corpus, provided they were processed using the Corpus.
spacy_lang pipeline.

Parameters docs —

get (match_func: Callable[[spacy.tokens.doc.Doc], bool], limit: Optional[int] = None) — Itera-
tor[spacy.tokens.doc.Doc]
Get all (or N <= 1imit)docs in Corpus for whichmatch_func (doc) is True.

Parameters

* match_func - Function that takes a spacy.tokens.Doc as input and returns a
boolean value. For example:

’Corpus.get(lambda x: len(x) >= 100) ‘

gets all docs with at least 100 tokens. And:

’Corpus.get(lambda doc: doc._.meta["author"] == "Burton DeWilde™) ‘

gets all docs whose author was given as ‘Burton DeWilde’.
e limit — Maximum number of matched docs to return.

Yields spacy.tokens.Doc — Next document passing match_func.

Tip: To get doc(s) by index, treat Corpus as a list and use Python’s usual indexing and slicing:
Corpus [0] gets the first document in the corpus; Corpus [: 5] gets the first 5; etc.

remove (match_func: Callable[[spacy.tokens.doc.Doc], bool], limit: Optional[int] = None) — None
Remove all (or N <= 1limit) docs in Corpus for which match_func (doc) is True. Corpus
doc/sent/token counts are adjusted accordingly.

Parameters

e match_func — Function that takes a spacy.tokens.Doc and returns a boolean
value. For example:

Corpus.remove (lambda x: len(x) >= 100)

removes docs with at least 100 tokens. And:

22 Chapter 4. contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.10.1

Corpus.remove (lambda doc: doc._.meta["author"] == "Burton DeWilde

. n)

removes docs whose author was given as “Burton DeWilde”.

¢ limit — Maximum number of matched docs to remove.

Tip: To remove doc(s) by index, treat Corpus as a list and use Python’s usual indexing and slicing: del
Corpus [0] removes the first document in the corpus; del Corpus|[:5] removes the first 5; etc.

property vectors
Constituent docs’ word vectors stacked in a 2d array.

property vector_norms
Constituent docs’ L2-normalized word vectors stacked in a 2d array.

word_counts (¥, normalize: str = 'lemma’, weighting: str = 'count’, as_strings: bool = False, fil-
ter_stops: bool = True, filter_punct: bool = True, filter_nums: bool = False) —
Dict[Union[int, str], Union[int, float]]
Map the set of unique words in Corpus to their counts as absolute, relative, or binary frequencies of
occurence, similar to Doc._ . to_bag_of_words () but aggregated over all docs.

Parameters

* normalize — If “lemma”, lemmatize words before counting; if “lower”, lowercase
words before counting; otherwise, words are counted using the form with which they
appear.

* weighting ({"count", "freqg"})- Type of weight to assign to words. If “count”
(default), weights are the absolute number of occurrences (count) of word in corpus. If
“freq”, word counts are normalized by the total token count, giving their relative frequen-
cies of occurrence.

Note: The resulting set of frequencies won’t (necessarily) sum to 1.0, since punctuation
and stop words are filtered out after counts are normalized.

* as_strings - If True, words are returned as strings; if False (default), words are re-
turned as their unique integer ids.

e filter_stops — If True (default), stop word counts are removed.
e filter_punct — If True (default), punctuation counts are removed.
e filter nums - If True, number counts are removed.

Returns Mapping of a unique word id or string (depending on the value of as_strings)
to its absolute, relative, or binary frequency of occurrence (depending on the value of
weighting).

See also:
textacy.vsm.get_term freqgs()

word_doc_counts (* normalize: str = 'lemma’, weighting: str = 'count’, smooth_idf: bool = True,
as_strings: bool = False, filter_stops: bool = True, filter_punct: bool = True,

filter_nums: bool = True) — Dict[Union[int, str], Union[int, float]]
Map the set of unique words in Corpus to their document counts as absolute, relative, inverse, or binary

frequencies of occurence.

. API Reference 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

Parameters

* normalize — If “lemma”, lemmatize words before counting; if “lower”, lowercase
words before counting; otherwise, words are counted using the form with which they
appear.

* weighting ({"count", "freq", "idf"})- Type of weight to assign to words.
If “count” (default), weights are the absolute number (count) of documents in which word
appears. If “freq”, word doc counts are normalized by the total document count, giving
their relative frequencies of occurrence. If “idf”, weights are the log of the inverse rela-
tive frequencies: 1og (n_docs / word_doc_count) or (if smooth_idf is True)
log(l + (n_docs / word_doc_count)) .

* smooth_idf — If True, add 1 to all word doc counts when calculating “idf” weighting,
equivalent to adding a single document to the corpus containing every unique word.

* as_strings — If True, words are returned as strings; if False (default), words are re-
turned as their unique integer ids

e filter_stops — If True (default), stop word counts are removed.
e filter_punct — If True (default), punctuation counts are removed.
e filter_nums — If True (default), number counts are removed.

Returns Mapping of a unique word id or string (depending on the value of as_strings)
to the number of documents in which it appears weighted as absolute, relative, or binary
frequencies (depending on the value of weighting).

See also:
textacy.vsm.get_doc_freqgs ()

save (filepath: Union[str, pathlib.Path], store_user_data: bool = True) — None
Save Corpus to disk as binary data.

Parameters
* filepath — Full path to file on disk where Corpus data will be saved as a binary file.

e store_user_data — If True, store user data and values of custom extension attributes
along with core spaCy attributes.

See also:

* Corpus.load()
* spacy.tokens.DocBin

classmethod load (lang: Union[str, spacy.language.Language], filepath: Union[str, pathlib.Path],

store_user_data: bool = True) — textacy.corpus.Corpus
Load previously saved Corpus binary data, reproduce the original :class: spacy.tokens.Doc's tokens and

annotations, and instantiate a new :class: Corpus from them.
Parameters
* lang -

* filepath — Full path to file on disk where Corpus data was previously saved as a
binary file.

e store_user_data — If True, load stored user data and values of custom extension
attributes along with core spaCly attributes.

Returns Corpus

24 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.10.1

See also:

* Corpus.save ()

* spacy.tokens.DocBin

4.3.2 spaCy extensions

Doc extensions

get_lang

Get the standard, two-letter language code assigned to
Doc and its associated spacy.vocab.Vocab.

get_preview

Get a short preview of the Doc, including the number
of tokens and an initial snippet.

get_meta

Get custom metadata added to Doc.

set_meta

Add custom metadata to Doc.

get_tokens

Yield the tokens in Doc, one at a time.

get_n_tokens

Get the number of tokens (including punctuation) in
Doc.

get_n_sents

Get the number of sentences in Doc.

to_tokenized_ text

Transform Doc into an ordered, nested list of token-
texts per sentence.

to_tagged_text

Transform Doc into an ordered, nested list of (token-
text, part-of-speech tag) pairs per sentence.

to_terms_1list

Transform Doc into a sequence of ngrams and/or enti-

ties — not necessarily in order of appearance — where
each appears in the sequence as many times as it appears
in Doc.

to _bag of_terms Transform Doc into a bag-of-terms: the set of unique
terms in Doc mapped to their frequency of occurrence,
where “terms” includes ngrams and/or entities.

to _bag of_words Transform Doc into a bag-of-words: the set of unique
words in Doc mapped to their absolute, relative, or bi-
nary frequency of occurrence.

to_semantic_network Transform Doc into a semantic network, where nodes
are either “words” or “sents” and edges between nodes
may be weighted in different ways.

textacy.spacier.doc_extensions: Inspect, extend, and transform spaCy’s core data structure, spacy .
tokens.Doc, either directly via functions that take a Doc as their first argument or as custom attributes / methods
on instantiated docs prepended by an underscore:

>>> spacy_lang = textacy.load_spacy_lang("en")
>>> doc = spacy_lang("This is a short text.")
>>> print (get_preview (doc))

Doc (6 tokens: "This is a short text.")

>>> print (doc._.preview)

Doc (6 tokens: "This is a short text.")

textacy.spacier.doc_extensions.set_doc_extensions ()
Set textacy’s custom property and method doc extensions on the global spacy.tokens.Doc.

textacy.spacier.doc_extensions.get_doc_extensions ()

4.3. API Reference 25

textacy Documentation, Release 0.10.1

Get textacy’s custom property and method doc extensions that can be set on or removed from the global spacy .
tokens.Doc.

textacy.spacier.doc_extensions.remove_doc_extensions ()
Remove textacy’s custom property and method doc extensions from the global spacy.tokens.Doc.

textacy.spacier.doc_extensions.get_lang (doc: spacy.tokens.doc.Doc) — str
Get the standard, two-letter language code assigned to Doc and its associated spacy .vocab.Vocab.

textacy.spacier.doc_extensions.get_preview (doc: spacy.tokens.doc.Doc) — str
Get a short preview of the Doc, including the number of tokens and an initial snippet.

textacy.spacier.doc_extensions.get_tokens (doc: spacy.tokens.doc.Doc) — Iter-

able[spacy.tokens.token.Token]
Yield the tokens in Doc, one at a time.

textacy.spacier.doc_extensions.get_meta (doc: spacy.tokens.doc.Doc) — dict
Get custom metadata added to Doc.

textacy.spacier.doc_extensions.set_meta (doc: spacy.tokens.doc.Doc, value: dict) — None
Add custom metadata to Doc.

textacy.spacier.doc_extensions.get_n_tokens (doc: spacy.tokens.doc.Doc) — int
Get the number of tokens (including punctuation) in Doc.

textacy.spacier.doc_extensions.get_n_sents (doc: spacy.tokens.doc.Doc) — int
Get the number of sentences in Doc.

textacy.spacier.doc_extensions.to_tokenized text (doc: spacy.tokens.doc.Doc) —
List[List[str]]
Transform Doc into an ordered, nested list of token-texts per sentence.

Note: If doc hasn’t been segmented into sentences, the entire document is treated as a single sentence.

textacy.spacier.doc_extensions.to_tagged_text (doc: spacy.tokens.doc.Doc) —
List[List[Tuple[str, str]]]
Transform Doc into an ordered, nested list of (token-text, part-of-speech tag) pairs per sentence.

Note: If doc hasn’t been segmented into sentences, the entire document is treated as a single sentence.

textacy.spacier.doc_extensions.to_terms_list (doc: spacy.tokens.doc.Doc, *, ngrams:

Optional[Union[int, Collection[int]]]
= 1, 2, 3, entities: Optional[bool] =
True, normalize: Optional[Union[str,

Callable[[Union[spacy.tokens.span.Span,
spacy.tokens.token.Token]], str]]] =

'lemma’, as_strings: bool = Fualse,
**kwargs) — Union[Iterable[int], Iter-
able[str]]

Transform Doc into a sequence of ngrams and/or entities — not necessarily in order of appearance — where
each appears in the sequence as many times as it appears in Doc.

Parameters
e doc —

* ngrams — ngrams to include in the terms list. If {1, 2, 3}, unigrams, bigrams, and
trigrams are included; if 2, only bigrams are included; if None, ngrams aren’t included,
except for those belonging to named entities.

26 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* entities - If True, entities are included in the terms list; if False, they are excluded from
the list; if None, entities aren’t included or excluded at all.

Note: When both entities and ngrams are non-null, exact duplicates (based on start
and end indexes) are handled. If entities is True, any duplicate entities are included
while duplicate ngrams are discarded to avoid double-counting; if entities is False, no
entities are included of course, and duplicate ngrams are discarded as well.

* normalize - If “lemma”, lemmatize terms; if “lower”, lowercase terms; if falsy, use the
form of terms as they appear in doc; if callable, must accept a Token or Span and return a

str, e.2. get_normalized text ().

* as_strings — If True, terms are returned as strings; if False, terms are returned as their
unique integer ids.

* kwargs —

See

filter_stops (bool)
filter_punct (bool)
filter_nums (bool)

include_pos (str or Set[str])

exclude_pos (str or Set[str])

min_freq (int)

include_types (str or Set[str])

exclude_types (str or Set[str]

drop_determiners (bool)

textacy.extract.words (),

textacy.extract.ngrams (), and

textacy.extract.entities () for details.

Yields The next term in the terms list, as either a unique integer id or a string.

Raises

* ValueError — if neither entities nor ngrams are included, or if normalize have
invalid values

* TypeError —if entities has an invalid type

Note: Despite the name,

list (to_terms_list (doc)).

this is a generator function; to get an actual list of terms, call

textacy.spacier.doc_extensions.to_bag_of_terms (doc: spacy.tokens.doc.Doc, *, ngrams:

Optional[Union[int, Collection[int]]]

= 1, 2, 3, entities: Optional[bool] =

True, normalize: Optional[Union[str,

Callable[[Union[spacy.tokens.span.Span,
spacy.tokens.token.Token]], str]]] =

'lemma’, weighting: str = 'count',

as_strings: bool = False, **kwargs) —

Dict[Union[int, str], Union[int, float]]

Transform Doc into a bag-of-terms: the set of unique terms in Doc mapped to their frequency of occurrence,

4.3. API Reference

27

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

where “terms” includes ngrams and/or entities.

Parameters

doc -

ngrams — n of which n-grams to include. (1, 2, 3) (default) includes unigrams
(words), bigrams, and trigrams; 2 if only bigrams are wanted; falsy (e.g. False) to not
include any

entities — If True (default), include named entities; note: if ngrams are also included,
any ngrams that exactly overlap with an entity are skipped to prevent double-counting

normalize - If “lemma”, lemmatize terms; if “lower”, lowercase terms; if falsy, use the
form of terms as they appear in doc; if a callable, must accept a Token or Span and return
astr,e.g. textacy.spacier.utils.get_normalized text ().

weighting ({"count", "freq", "binary"}) — Type of weight to assign to
terms. If “count” (default), weights are the absolute number of occurrences (count) of term
in doc. If “binary”, all counts are set equal to 1. If “freq”, term counts are normalized by
the total token count, giving their relative frequency of occurrence.

as_strings - If True, words are returned as strings; if False (default), words are returned
as their unique integer ids.

kwargs —

— filter_stops (bool)

— filter_punct (bool)

— filter_nums (bool)

— include_pos (str or Set[str])
— exclude_pos (str or Set[str])
— min_freq (int)

— include_types (str or Set[str])
— exclude_types (str or Set[str]
— drop_determiners (bool)

See textacy.extract.words (), textacy.extract.ngrams (), and
textacy.extract.entities () for details.

Returns Mapping of a unique term id or string (depending on the value of as_strings) to its
absolute, relative, or binary frequency of occurrence (depending on the value of weighting).

See also:

to_terms_1list (), which is used under the hood.

textacy.spacier.doc_extensions.to_bag_of_words (doc: spacy.tokens.doc.Doc, *, normal-

Transform Doc into a bag-of-words: the set of unique words in Doc mapped to their absolute, relative, or binary

ize: str = 'lemma’', weighting: str =
‘count’, as_strings: bool = False, fil-
ter_stops: bool = True, filter_punct:
bool = True, filter_nums: bool = False)
— Dict[Union[int, str], Union[int, float]]

frequency of occurrence.

Parameters

28

Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

* doc—

* normalize — If “lemma”, lemmatize words before counting; if “lower”, lowercase words
before counting; otherwise, words are counted using the form with which they they appear
in doc.

* weighting ({"count", "freqg", "binary"}) — Type of weight to assign to
words. If “count” (default), weights are the absolute number of occurrences (count) of word
in doc. If “binary”, all counts are set equal to 1. If “freq”, word counts are normalized by
the total token count, giving their relative frequency of occurrence. Note: The resulting set
of frequencies won’t (necessarily) sum to 1.0, since punctuation and stop words are filtered
out after counts are normalized.

* as_strings (bool)—If True, words are returned as strings; if False (default), words are
returned as their unique integer ids

 filter_ stops (bool)—If True (default), stop words are removed after counting.

e filter_ punct (bool) - If True (default), punctuation tokens are removed after count-
ing.
e filter nums (bool) - If True, tokens consisting of digits are removed after counting.

Returns Mapping of a unique term id or string (depending on the value of as_strings) to its
absolute, relative, or binary frequency of occurrence (depending on the value of weight ing).

textacy.spacier.doc_extensions.to_semantic_network (doc: spacy.tokens.doc.Doc,
* nodes: str = 'words', nor-
malize: Optional[Union|[str,

Callable[[Union[spacy.tokens.span.Span,

spacy.tokens.token.Token]], str]]]

= 'lemma’, edge_weighting: str =

'default’, window_width: int = 10)

— networkx.classes.graph.Graph
Transform Doc into a semantic network, where nodes are either “words” or “sents” and edges between nodes

may be weighted in different ways.
Parameters
* doc —

* nodes ({"words", "sents"})— Type of doc component to use as nodes in the se-
mantic network.

* normalize - If “lemma”, lemmatize terms; if “lower”, lowercase terms; if falsy, use the
form of terms as they appear in doc; if a callable, must accept a Token or Span (if nodes
= “words” or “sents”, respectively) and return a str, e.g. get_normalized text ()

* edge_weighting — Type of weighting to apply to edges between nodes; if nodes =

LEINT3

“words”, options are {“cooc_freq”, “binary”}, if nodes = “sents”, options are {‘“‘cosine”,
“jaccard”}; if “default”, “cooc_freq” or “cosine” will be automatically used.

* window_width - Size of sliding window over terms that determines which are said to
co-occur; only applicable if nodes = “words”.

Returns where nodes represent either terms or sentences in doc; edges, the relationships between
them.

Return type networkx.Graph
Raises ValueError — If nodes is neither “words” nor “sents”.

See also:

4.3. API Reference 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

* terms_to_semantic_network ()

* sents_to_semantic_network ()

Pipeline Components

textacy.spacier.components: Custom components to add to a spaCy language pipeline.

class textacy.spacier.components.TextStatsComponent (attrs=None)
A custom component to be added to a spaCy language pipeline that computes one, some, or all text stats for a
parsed doc and sets the values as custom attributes on a spacy.tokens.Doc.

Add the component to a pipeline, after the parser (as well as any subsequent components that modify the
tokens/sentences of the doc):

>>> en = spacy.load('en')
>>> text_stats_component = TextStatsComponent ()
>>> en.add_pipe (text_stats_component, after='parser')

Process a text with the pipeline and access the custom attributes via spaCy’s underscore syntax:

>>> doc = en(u"This is a test test someverylongword.")

>>> doc._.n_words
6
>>> doc._.flesch_reading_ease

73.84500000000001

Specify which attributes of the textacy.text_stats.TextStats () to add to processed documents:

>>> en = spacy.load('en')

>>> text_stats_component = TextStatsComponent (attrs='n_words')
>>> en.add_pipe (text_stats_component, last=True)

>>> doc = en(u"This is a test test someverylongword.")

>>> doc._.n_words

6

>>> doc._.flesch_reading_ease

AttributeError: [E046] Can't retrieve unregistered extension attribute 'flesch_
—reading_ease'. Did you forget to call the "“set_extension’ method?

Parameters attrs (str or Iterable[str] or None) - If str, a single text stat to com-
pute and set on a Doc. If Iterable[str], multiple text stats. If None, all text stats are computed
and set as extensions.

name
Default name of this component in a spaCy language pipeline, used to get and modify the component via
various spacy . Language methods, e.g. https://spacy.io/api/language#get_pipe.

Type str
See also:

textacy.text_stats.TextStats

30 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://spacy.io/api/language#get_pipe
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

spaCy Utils

textacy.spacier.utils: Helper functions for working with / extending spaCy’s core functionality.

textacy.spacier.utils.make_doc_from_text_chunks (fext: str, lang: Union/[str,
spacy.language.Language],
chunk_size: int = 100000) —

spacy.tokens.doc.Doc
Make a single spaCy-processed document from 1 or more chunks of text. This is a workaround for processing

very long texts, for which spaCy is unable to allocate enough RAM.

Although this function’s performance is pretty good, it’s inherently less performant that just processing the entire
text in one shot. Only use it if necessary!

Parameters
* text — Text document to be chunked and processed by spaCly.

* lang — A 2-letter language code (e.g. “en”), the name of a spaCy model for the desired
language, or an already-instantiated spaCy language pipeline.

* chunk_size — Number of characters comprising each text chunk (excluding the last
chunk, which is probably smaller). For best performance, value should be somewhere be-
tween le3 and le7, depending on how much RAM you have available.

Note: Since chunking is done by character, chunks edges’ probably won’t respect natu-
ral language segmentation, which means that every chunk_size characters, spaCy will
probably get tripped up and make weird parsing errors.

Returns A single processed document, initialized from components accumulated chunk by chunk.

textacy.spacier.utils.merge_spans (spans: Iterable[spacy.tokens.span.Span], doc:

spacy.tokens.doc.Doc) — None
Merge spans into single tokens in doc, in-place.

Parameters
* spans (Iterable[spacy.tokens.Span]) —
¢ doc (spacy.tokens.Doc)—

textacy.spacier.utils.preserve_case (foken: spacy.tokens.token.Token) — bool
Return True if t oken is a proper noun or acronym; otherwise, False.

Raises ValueError — If parent document has not been POS-tagged.

textacy.spacier.utils.get_normalized_text (span_or_token: Union[spacy.tokens.span.Span,

spacy.tokens.token.Token]) — str
Get the text of a spaCy span or token, normalized depending on its characteristics. For proper nouns and

acronyms, text is returned as-is; for everything else, text is lemmatized.

textacy.spacier.utils.get_main_verbs_of_sent (sent: spacy.tokens.span.Span) —

List[spacy.tokens.token.Token]
Return the main (non-auxiliary) verbs in a sentence.

textacy.spacier.utils.get_subjects_of_verb (verb: spacy.tokens.token.Token) —

List[spacy.tokens.token.Token]
Return all subjects of a verb according to the dependency parse.

textacy.spacier.utils.get_objects_of_ verb (verb: spacy.tokens.token.Token) —

List[spacy.tokens.token.Token]
Return all objects of a verb according to the dependency parse, including open clausal complements.

4.3. API Reference 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

textacy.spacier.utils.get_span_for_compound_noun (noun: spacy.tokens.token.Token) —

Tuple[int, int]

Return document indexes spanning all (adjacent) tokens in a compound noun.

textacy.spacier.utils.get_span_for_verb_auxiliaries (verb: spacy.tokens.token.Token)

— Tuple[int, int]

Return document indexes spanning all (adjacent) tokens around a verb that are auxiliary verbs or negations.

4.3.3 Datasets

capitol_words.CapitolWords

Stream a collection of Congressional speeches from a
compressed json file on disk, either as texts or text +
metadata pairs.

supreme_court.SupremeCourt

Stream a collection of US Supreme Court decisions
from a compressed json file on disk, either as texts or
text + metadata pairs.

wikimedia.Wikipedia

Stream a collection of Wikipedia pages from a version-
and language-specific database dump, either as texts or
text + metadata pairs.

wikimedia.Wikinews

Stream a collection of Wikinews pages from a version-
and language-specific database dump, either as texts or
text + metadata pairs.

reddit_comments.RedditComments

Stream a collection of Reddit comments from 1 or more
compressed files on disk, either as texts or text + meta-
data pairs.

oxford text_archive.OxfordTextArchive

Stream a collection of English-language literary works
from text files on disk, either as texts or text + metadata
pairs.

imdb.IMDB

Stream a collection of IMDB movie reviews from text
files on disk, either as texts or text + metadata pairs.

udhr.UDHR

Stream a collection of UDHR translations from disk, ei-
ther as texts or text + metadata pairs.

Capitol Words Congressional speeches

A collection of ~11k (almost all) speeches given by the main protagonists of the 2016 U.S. Presidential election that
had previously served in the U.S. Congress — including Hillary Clinton, Bernie Sanders, Barack Obama, Ted Cruz,

and John Kasich — from January 1996 through June 2016.
Records include the following data:
* text: Full text of the Congressperson’s remarks.

* title: Title of the speech, in all caps.

* date: Date on which the speech was given, as an ISO-standard string.

* speaker_name: First and last name of the speaker.
* speaker_party: Political party of the speaker: “R” for Republican, “D” for Democrat, “I” for Independent.

e congress: Number of the Congress in which the speech was given: ranges continuously between 104 and
114.

e chamber: Chamber of Congress in which the speech was given: almost all are either “House” or “Senate”,
with a small number of “Extensions”.

32 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

This dataset was derived from data provided by the (now defunct) Sunlight Foundation’s Capitol Words API.

class textacy.datasets.capitol_words.CapitolWords (data_dir: Union/str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builc

packages/textacy/data/capitol_words'))
Stream a collection of Congressional speeches from a compressed json file on disk, either as texts or text +

metadata pairs.

Download the data (one time only!) from the textacy-data repo (https://github.com/bdewilde/textacy-data), and
save its contents to disk:

>>> import textacy.datasets

>>> ds = textacy.datasets.CapitolWords ()
>>> ds.download()

>>> ds.info

{'name': 'capitol_words"',
'site_url': 'http://sunlightlabs.github.io/Capitol-Words/"',
'description': 'Collection of ~11k speeches in the Congressional Record given by,

—notable U.S. politicians between Jan 1996 and Jun 2016.'"}

Iterate over speeches as texts or records with both text and metadata:

>>> for text in ds.texts(limit=3):
print (text, end="\n\n")
>>> for text, meta in ds.records (limit=3):
print ("\n (y\n{)".format (meta["title"], meta["speaker_name"], text))

Filter speeches by a variety of metadata fields and text length:

>>> for text, meta in ds.records (speaker_name="Bernie Sanders", limit=3):

R print ("\n{}, \n{}".format (meta["title"], meta["date"], text))

>>> for text, meta in ds.records (speaker_party="D", congress={110, 111, 112},

chamber="Senate", limit=3):

L. print (meta["title"], metal["speaker_name"], meta["date"])

>>> for text, meta in ds.records (speaker_name={"Barack Obama", "Hillary Clinton"},
date_range=("2005-01-01", "2005-12-31")):

L. print (meta["title"], metal["speaker_name"], meta["date"])

>>> for text in ds.texts(min_len=50000) :

print (len(text))

Stream speeches into a textacy. Corpus:

>>> textacy.Corpus ("en", data=ota.records (limit=100))
Corpus (100 docs; 70496 tokens)

Parameters data_dir — Path to directory on disk under which dataset is stored, i.e. /path/to/
data_dir/capitol_words.

full_date_range
First and last dates for which speeches are available, each as an ISO-formatted string (YYYY-MM-DD).

speaker_names
Full names of all speakers included in corpus, e.g. “Bernie Sanders”.

speaker_parties
All distinct political parties of speakers, e.g. “R”.

4.3. API Reference 33

http://sunlightlabs.github.io/Capitol-Words/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/bdewilde/textacy-data

textacy Documentation, Release 0.10.1

chambers
All distinct chambers in which speeches were given, e.g. “House”.

congresses
All distinct numbers of the congresses in which speeches were given, e.g. 114.

property filepath
Full path on disk for CapitolWords data as compressed json file. None if file is not found, e.g. has not yet
been downloaded.

download (*, force: bool = False) — None

Download the data as a Python version-specific compressed json file and save it to disk under the
data_dir directory.

Parameters force — If True, download the dataset, even if it already exists on disk under
data_dir.

texts (¥, speaker_name: Optional[Union[str, Set[str]]] = None, speaker_party: Optional[Union|str,
Set[str]]] = None, chamber: Optional[Union[str, Set[str]]] = None, congress: Op-
tional{ Union[int, Set[int]]] = None, date_range: Optional[Tuple[Optional[str], Optional[str]]]
= None, min_len: Optional[int] = None, limit: Optional[int] = None) — Iterable[str]
Iterate over speeches in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield texts only, in chronological order.

Parameters

* speaker name — Filter speeches by the speakers’ name; see CapitolWords.
speaker_names.

* speaker_party — Filter speeches by the speakers’ party; see CapitolWords.
speaker_parties.

* chamber - Filter speeches by the chamber in which they were given; see
CapitolWords.chambers.

* congress — Filter speeches by the congress in which they were given; see
CapitolWords.congresses.

* date_range — Filter speeches by the date on which they were given. Both start and end
date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

* min_len - Filter texts by the length (# characters) of their text content.

* limit — Yield no more than 1imit texts that match all specified filters.
Yields Full text of next (by chronological order) speech in dataset passing all filter params.
Raises ValueError — If any filtering options are invalid.

records (*, speaker_name: Optional[Union[str, Set[str]]] = None, speaker_party: Op-
tional{ Union[str, Set[str]]] = None, chamber: Optional[Union[str, Set[str]]] = None,
congress: Optional[Union[int, Set[int]]] = None, date_range: Optional[Tuple[Optional[str],
Optional[str]]] = None, min_len: Optional[int] = None, limit: Optional[int] = None) —
Iterable[Tuple[str, dict]]
Iterate over speeches in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield text + metadata pairs, in chronological order.

Parameters

* speaker name — Filter speeches by the speakers’ name; see CapitolWords.
speaker_names.

34 Chapter 4. contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

textacy Documentation, Release 0.10.1

* speaker_party — Filter speeches by the speakers’ party; see CapitolWords.
speaker_parties.

* chamber - Filter speeches by the chamber in which they were given; see
CapitolWords.chambers.

* congress - Filter speeches by the congress in which they were given; see
CapitolWords.congresses.

* date_range - Filter speeches by the date on which they were given. Both start and end
date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

* min_len — Filter speeches by the length (# characters) of their text content.
e limit - Yield no more than 1imit speeches that match all specified filters.

Yields Full text of the next (by chronological order) speech in dataset passing all filters, and its
corresponding metadata.

Raises ValueError —If any filtering options are invalid.

Supreme Court decisions
A collection of ~8.4k (almost all) decisions issued by the U.S. Supreme Court from November 1946 through June
2016 — the “modern” era.
Records include the following data:
* text: Full text of the Court’s decision.
* case_name: Name of the court case, in all caps.

* argument_date: Date on which the case was argued before the Court, as an ISO-formatted string (“YYY Y-
MM-DD”).

* decision_date: Date on which the Court’s decision was announced, as an ISO-formatted string (“YYYY-
MM-DD”).

* decision_direction: Ideological direction of the majority’s decision: one of “conservative”, “liberal”, or
“unspecifiable”.

* maj_opinion_author: Name of the majority opinion’s author, if available and identifiable, as an integer
code whose mapping is given in SupremeCourt.opinion_author_codes.

* n_maj_votes: Number of justices voting in the majority.
* n_min_votes: Number of justices voting in the minority.

* issue: Subject matter of the case’s core disagreement (e.g. “affirmative action”) rather than its legal basis (e.g.
“the equal protection clause”), as a string code whose mapping is given in SupremeCourt.issue_codes.

* issue_area: Higher-level categorization of the issue (e.g. “Civil Rights”), as an integer code whose mapping
is given in SupremeCourt.issue_area_codes.

* us_cite_1id: Citation identifier for each case according to the official United States Reports. Note: There are

9o ¢

~300 cases with duplicate ids, and it’s not clear if that’s “correct” or a data quality problem.

The text in this dataset was derived from FindLaw’s searchable database of court cases: http://caselaw.findlaw.com/
court/us-supreme-court.

The metadata was extracted without modification from the Supreme Court Database: Harold J. Spaeth, Lee Epstein, et
al. 2016 Supreme Court Database, Version 2016 Release 1. http://supremecourtdatabase.org. Its license is CC BY-NC
3.0 US: https://creativecommons.org/licenses/by-nc/3.0/us/.

4.3. API Reference 35

https://docs.python.org/3/library/exceptions.html#ValueError
http://caselaw.findlaw.com/court/us-supreme-court
http://caselaw.findlaw.com/court/us-supreme-court
http://supremecourtdatabase.org
https://creativecommons.org/licenses/by-nc/3.0/us/

textacy Documentation, Release 0.10.1

This dataset’s creation was inspired by a blog post by Emily Barry: http://www.emilyinamillion.me/blog/2016/7/13/
visualizing-supreme-court-topics-over-time.

The two datasets were merged through much munging and a carefully trained model using the dedupe package.
The model’s duplicate threshold was set so as to maximize the F-score where precision had twice as much weight as
recall. Still, given occasionally baffling inconsistencies in case naming, citation ids, and decision dates, a very small
percentage of texts may be incorrectly matched to metadata. (Sorry.)

class textacy.datasets.supreme_court.SupremeCourt (data_dir: Union/str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builc

packages/textacy/data/supreme_court'))
Stream a collection of US Supreme Court decisions from a compressed json file on disk, either as texts or text +

metadata pairs.

Download the data (one time only!) from the textacy-data repo (https://github.com/bdewilde/textacy-data), and
save its contents to disk:

>>> import textacy.datasets

>>> ds = textacy.datasets.SupremeCourt ()
>>> ds.download ()

>>> ds.info

{'name': 'supreme_court',
'site_url': 'http://caselaw.findlaw.com/court/us—-supreme—-court',
'description': 'Collection of ~8.4k decisions issued by the U.S. Supreme Court

—between November 1946 and June 2016.'}

Iterate over decisions as texts or records with both text and metadata:

>>> for text in ds.texts (limit=3):

R print (text[:500], end="\n\n")

>>> for text, meta in ds.records(limit=3):

C. print ("\n (y\n//".format (meta["case_name"], meta["decision_date"],
—text[:500]))

Filter decisions by a variety of metadata fields and text length:

>>> for text, meta in ds.records (opinion_author=109, limit=3): # Notorious RBG!

print (meta["case_name"], meta["decision_direction"], meta["n_maj_votes"])
>>> for text, meta in ds.records (decision_direction="1liberal",

issue_area={1, 9, 10}, limit=3):

print (meta["case_name"], meta["ma]j_opinion_author"], meta["n_maj_votes"])
>>> for text, meta in ds.records (opinion_author=102, date_range=('1985-02-11",
—'1986-02-11")) :

print ("\n ({})".format (meta["case_name"], meta["decision_date"]))

print (ds.issue_codes[meta["issue"]], "=>", meta["decision_direction"])
>>> for text in ds.texts (min_len=250000) :

print (len(text))

Stream decisions into a textacy.Corpus:

>>> textacy.Corpus ("en", data=ds.records (limit=25))
Corpus (25 docs; 136696 tokens)

Parameters data_dir (stror pathlib.Path)— Path to directory on disk under which the data
is stored, i.e. /path/to/data_dir/supreme_court.

36 Chapter 4. contents

http://www.emilyinamillion.me/blog/2016/7/13/visualizing-supreme-court-topics-over-time
http://www.emilyinamillion.me/blog/2016/7/13/visualizing-supreme-court-topics-over-time
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/bdewilde/textacy-data
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.10.1

full_date_range
First and last dates for which decisions are available, each as an ISO-formatted string (YYYY-MM-DD).

decision_directions
All distinct decision directions, e.g. “liberal”.

opinion_author_codes
Mapping of majority opinion authors, from id code to full name.

issue_area_ codes
Mapping of high-level issue area of the case’s core disagreement, from id code to description.

issue_codes
Mapping of the specific issue of the case’s core disagreement, from id code to description.

property filepath
Full path on disk for SupremeCourt data as compressed json file. None if file is not found, e.g. has not yet
been downloaded.

download (*, force: bool = False) — None
Download the data as a Python version-specific compressed json file and save it to disk under the

data_dir directory.

Parameters force — If True, download the dataset, even if it already exists on disk under
data_dir.

texts (¥, opinion_author: Optional[Union[int, Set[int]]] = None, decision_direction: Op-
tional{ Union[str, Set[str]]] = None, issue_area: Optional[Union[int, Set[int]]] = None,
date_range: Optional[Tuple[Optional[str], Optional[str]]] = None, min_len: Optional[int] =

None, limit: Optional[int] = None) — Iterable[str]
Iterate over decisions in this dataset, optionally filtering by a variety of metadata and/or text length, and

yield texts only, in chronological order by decision date.
Parameters

* opinion_author - Filter decisions by the name(s) of the majority opin-
ion’s author, coded as an integer whose mapping is given in SupremeCourt.
opinion_author_codes.

* decision_direction - Filter decisions by the ideological direction of the majority’s
decision; see SupremeCourt.decision_directions.

* issue_area - Filter decisions by the issue area of the case’s subject matter, coded as
an integer whose mapping is given in SupremeCourt.issue_area_codes.

* date_range — Filter decisions by the date on which they were decided; both start and
end date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

* min_len - Filter decisions by the length (# characters) of their text content.
e limit - Yield no more than 1imit decisions that match all specified filters.
Yields Text of the next decision in dataset passing all filters.
Raises ValueError - If any filtering options are invalid.

records (*, opinion_author: Optional[Union[int, Set[int]]] = None, decision_direction: Op-
tional{ Union[str, Set[str]]] = None, issue_area: Optional[Union[int, Set[int]]] = None,
date_range: Optional[Tuple[Optional[str], Optional[str]]] = None, min_len: Optional[int]
= None, limit: Optional[int] = None) — Iterable[Tuple[str, dict]]
Iterate over decisions in this dataset, optionally filtering by a variety of metadata and/or text length, and

yield text + metadata pairs, in chronological order by decision date.

4.3. API Reference 37

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

textacy Documentation, Release 0.10.1

Parameters

* opinion_author - Filter decisions by the name(s) of the majority opin-
ion’s author, coded as an integer whose mapping is given in SupremeCourt.
opinion_author_codes.

* decision_direction - Filter decisions by the ideological direction of the majority’s
decision; see SupremeCourt.decision _directions.

* issue_area - Filter decisions by the issue area of the case’s subject matter, coded as
an integer whose mapping is given in SupremeCourt.issue_area_codes.

* date_range - Filter decisions by the date on which they were decided; both start and
end date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

* min_len - Filter decisions by the length (# characters) of their text content.
* limit — Yield no more than 1imit decisions that match all specified filters.
Yields Text of the next decision in dataset passing all filters, and its corresponding metadata.

Raises ValueError - If any filtering options are invalid.

Wikimedia articles

All articles for a given Wikimedia project, specified by language and version.

Records include the following key fields (plus a few others):

text: Plain text content of the wiki page — no wiki markup!
title: Title of the wiki page.

wiki_links: A list of other wiki pages linked to from this page.
ext_links: A list of external URLs linked to from this page.
categories: A list of categories to which this wiki page belongs.
dt_created: Date on which the wiki page was first created.

page_id: Unique identifier of the wiki page, usable in Wikimedia APIs.

Datasets are generated by the Wikimedia Foundation for a variety of projects, such as Wikipedia and Wikinews.
The source files are meant for search indexes, so they’re dumped in Elasticsearch bulk insert format — basically, a
compressed JSON file with one record per line. For more information, refer to https://meta.wikimedia.org/wiki/Data_
dumps.

class textacy.datasets.wikimedia.Wikimedia (name, meta, project, data_dir, lang='en', ver-

sion="current', namespace=0)
Base class for project-specific Wikimedia datasets. See:

* Wikipedia
e Wikinews

property filepath
Full path on disk for the Wikimedia CirrusSearch db dump corresponding to the project, lang, and
version.

Type str

38

Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://meta.wikimedia.org/wiki/Data_dumps
https://meta.wikimedia.org/wiki/Data_dumps
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

download (*, force: bool = False) — None
Download the Wikimedia CirrusSearch db dump corresponding to the given project, lang, and
version as a compressed JSON file, and save it to disk under the data_dir directory.

Parameters force — If True, download the dataset, even if it already exists on disk under
data_dir.

Note: Some datasets are quite large (e.g. English Wikipedia is ~28GB) and can take hours to fully
download.

texts (¥, category: Optional[Union[str, Set[str]]] = None, wiki_link: Optional[Union[str, Set[str]]] =
None, min_len: Optional[int] = None, limit: Optional[int] = None) — Iterable[str]
Iterate over wiki pages in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield texts only, in order of appearance in the db dump file.

Parameters

* category — Filter wiki pages by the categories to which they’ve been assigned. For
multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s categories.

e wiki_1link - Filter wiki pages by the other wiki pages to which they’ve been linked.
For multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s wiki links.

* min_len - Filter wiki pages by the length (# characters) of their text content.
* limit - Yield no more than 1imit wiki pages that match all specified filters.
Yields Text of the next wiki page in dataset passing all filters.
Raises ValueError — If any filtering options are invalid.

records (¥, category: Optional[Union[str, Set[str]]] = None, wiki_link: Optional[Union[str, Set[str]]]
= None, min_len: Optional[int] = None, limit: Optional[int] = None) — Iterable[Tuple[str,
dict]]
Iterate over wiki pages in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield text + metadata pairs, in order of appearance in the db dump file.

Parameters

* category — Filter wiki pages by the categories to which they’ve been assigned. For
multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s categories.

* wiki_1link - Filter wiki pages by the other wiki pages to which they’ve been linked.
For multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s wiki links.

* min_len — Filter wiki pages by the length (# characters) of their text content.

e limit - Yield no more than 1imit wiki pages that match all specified filters.
Yields Text of the next wiki page in dataset passing all filters, and its corresponding metadata.
Raises ValueError - If any filtering options are invalid.

class textacy.datasets.wikimedia.Wikipedia (data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/
packages/textacy/data/wikipedia’), lang: str =
'en', version: str = ‘current', namespace: int =

0)

4.3. API Reference 39

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

Stream a collection of Wikipedia pages from a version- and language-specific database dump, either as texts or
text + metadata pairs.

Download a database dump (one time only!) and save its contents to disk:

>>> import textacy.datasets

>>> ds = textacy.datasets.Wikipedia(lang="en", version="current")
>>> ds.download ()

>>> ds.info

{'name': 'wikipedia',
'site_url': 'https://en.wikipedia.org/wiki/Main_Page',
'description': 'All pages for a given language- and version-specific Wikipedia,,

—~site snapshot.'}

Iterate over wiki pages as texts or records with both text and metadata:

>>> for text in ds.texts (limit=5):
print (text[:500])

>>> for text, meta in ds.records (limit=5):
print (meta["page_id"], metal["title"])

Filter wiki pages by a variety of metadata fields and text length:

>>> for text, meta in ds.records (category="Living people", limit=5):
print (meta["title"], meta["categories"])

>>> for text, meta in ds.records(wiki_link="United_States", limit=5):
print (meta["title"], meta["wiki_links"])

>>> for text in ds.texts(min_len=10000, limit=5):
print (len (text))

Stream wiki pages into a textacy.Corpus:

>>> textacy.Corpus ("en", data=ds.records (min_len=2000, 1limit=50))
Corpus (50 docs; 72368 tokens)

Parameters
* data dir - Path to directory on disk under which database dump files
are stored. Each file is expected as {lang}{project}/{version}/
{lang}{project}—-{version}-cirrussearch-content. json.gz im-

mediately under this directory.

* lang — Standard two-letter language code, e.g. “en” => “English”, “de” => “German’.
https://en.wikipedia.org/wiki/List_of _ISO_639-1_codes

* version — Database dump version to use. Either “current” for the most recently available
version or a date formatted as “YYYYMMDD”. Dumps are produced weekly; check for
available versions at https://dumps.wikimedia.org/other/cirrussearch/.

* namespace — Namespace of the wiki pages to include. Typical, public- facing content is
in the 0 (default) namespace.

class textacy.datasets.wikimedia.Wikinews (data_dir: Union/[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/er
packages/textacy/data/wikinews'), lang: str =
'en', version: str = 'current', namespace: int =

0)
Stream a collection of Wikinews pages from a version- and language-specific database dump, either as texts or

text + metadata pairs.

40 Chapter 4. contents

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://dumps.wikimedia.org/other/cirrussearch/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

Download a database dump (one time only!) and save its contents to disk:

>>> import textacy.datasets

>>> ds = textacy.datasets.Wikinews (lang="en", version="current")
>>> ds.download ()

>>> ds.info

{"name': 'wikinews',
'site_url': 'https://en.wikinews.org/wiki/Main_Page',
'description': 'All pages for a given language- and version-specific Wikinews,

—site snapshot.'}

Iterate over wiki pages as texts or records with both text and metadata:

>>> for text in ds.texts (limit=5):
print (text [:500])

>>> for text, meta in ds.records (limit=5):
print (meta["page_id"], metal["title"])

Filter wiki pages by a variety of metadata fields and text length:

>>> for text, meta in ds.records (category="Politics and conflicts", limit=5):
print (meta["title"], metal["categories"])

>>> for text, meta in ds.records (wiki_link="Reuters", limit=5):
print (meta["title"], metal["wiki_links"])

>>> for text in ds.texts(min_len=5000, limit=5):
print (len(text))

Stream wiki pages into a textacy.Corpus:

>>> textacy.Corpus ("en", data=ds.records (limit=100))
Corpus (100 docs; 33092 tokens)

Parameters
* data_dir - Path to directory on disk under which database dump files
are stored. Each file is expected as {lang}{project}/{version}/
{lang}{project}—-{version}-cirrussearch-content. json.gz im-

mediately under this directory.

* lang — Standard two-letter language code, e.g. “en” => “English”, “de” => “German”.
https://en.wikipedia.org/wiki/List_of _ISO_639-1_codes

* version — Database dump version to use. Either “current” for the most recently available
version or a date formatted as “YYYYMMDD”. Dumps are produced weekly; check for
available versions at https://dumps.wikimedia.org/other/cirrussearch/.

* namespace — Namespace of the wiki pages to include. Typical, public- facing content is
in the 0 (default) namespace.

4.3. API Reference 41

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://dumps.wikimedia.org/other/cirrussearch/

textacy Documentation, Release 0.10.1

Reddit comments

A collection of up to ~1.5 billion Reddit comments posted from October 2007 through May 2015.

Records include the following key fields (plus a few others):

body: Full text of the comment.

created_utc: Date on which the comment was posted.

subreddit: Sub-reddit in which the comment was posted, excluding the familiar “/t/” prefix.
score: Net score (upvotes - downvotes) on the comment.

gilded: Number of times this comment received reddit gold.

The raw data was originally collected by /u/Stuck_In_the_Matrix via Reddit’s APIS, and stored for posterity by the
Internet Archive. For more details, refer to https://archive.org/details/2015_reddit_comments_corpus.

class textacy.datasets.reddit_comments.RedditComments (data_dir: Union[str,

pathlib.Path] =

PosixPath('/home/docs/checkouts/readthedocs.org/user
packages/textacy/data/reddit_comments'))

Stream a collection of Reddit comments from 1 or more compressed files on disk, either as texts or text +
metadata pairs.

Download the data (one time only!) or subsets thereof by specifying a date range:

>>> import textacy.datasets

>>> ds = textacy.datasets.RedditComments ()

>>> ds.download (date_range=("2007-10", "2008-03"))
>>> ds.info

{"name': 'reddit_comments',
'site_url': 'https://archive.org/details/2015_reddit_comments_corpus',
'description': 'Collection of ~1.5 billion publicly available Reddit comments,

—from October 2007 through May 2015.'}

Iterate over comments as texts or records with both text and metadata:

>>> for text in ds.texts (limit=5):

print (text)
>>> for text, meta in ds.records (limit=5):
print ("\n \n//".format (meta["author"], meta["created_utc"], text))

Filter comments by a variety of metadata fields and text length:

>>> for text, meta in ds.records (subreddit="politics", limit=5):
print (meta["score"], ":", text)
>>> for text, meta in ds.records(date_range=("2008-01", "2008-03"), limit=5):
print (meta["created_utc"])
>>> for text, meta in ds.records(score_range=(10, None), limit=5):
print (meta["score"], ":", text)
>>> for text in ds.texts(min_len=2000, limit=5):
print (len(text))

Stream comments into a textacy.Corpus:

>>> textacy.Corpus ("en", data=ds.records (limit=1000))
Corpus (1000 docs; 27582 tokens)

42

Chapter 4. contents

https://archive.org
https://archive.org/details/2015_reddit_comments_corpus
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.10.1

Parameters data_dir — Path to directory on disk under which the data is stored, i.e. /path/
to/data_dir/reddit_comments. Each file covers a given month, as indicated in the
filename like “YYYY/RC_YYYY-MM.bz2”.

full date_range
First and last dates for which comments are available, each as an ISO-formatted string (YYYY-MM-DD).

property filepaths
Full paths on disk for all Reddit comments files found under RedditComments.data_dir directory,
sorted in chronological order.

download (*, date_range: Tuple[Optional[str], Optional[str]] = None, None, force: bool = False) —

None
Download 1 or more monthly Reddit comments files from archive.org and save them to disk under the

data_dir directory.
Parameters

* date_range - Interval specifying the [start, end) dates for which comments files will
be downloaded. Each item must be a str formatted as YYYY-MM or YYYY-MM-DD
(the latter is converted to the corresponding YYYY-MM value). Both start and end values
must be specified, but a null value for either is automatically replaced by the minimum or
maximum valid values, respectively.

* force —If True, download the dataset, even if it already exists on disk under data_dir.

texts (¥, subreddit: Optional[Union[str, Set[str]]] = None, date_range: Optional[Tuple[Optional[str],
Optional[str]]] = None, score_range: Optional[Tuple[Optional[int], Optional[int]]] = None,
min_len: Optional[int] = None, limit: Optional[int] = None) — Iterable[str]
Iterate over comments (text-only) in 1 or more files of this dataset, optionally filtering by a variety of
metadata and/or text length, in chronological order.

Parameters
* subreddit - Filter comments for those which were posted in the specified subreddit(s).

* date_range - Filter comments for those which were posted within the interval [start,
end). Each item must be a str in ISO-standard format, i.e. some amount of YYYY-MM-
DDTHH:mm:ss. Both start and end values must be specified, but a null value for either is
automatically replaced by the minimum or maximum valid values, respectively.

* score_range — Filter comments for those whose score (# upvotes minus # downvotes)
is within the interval [low, high). Both start and end values must be specified, but a null
value for either is automatically replaced by the minimum or maximum valid values, re-
spectively.

* min_len - Filter comments for those whose body length in chars is at least this long.

* limit — Maximum number of comments passing all filters to yield. If None, all com-
ments are iterated over.

Yields Text of the next comment in dataset passing all filters.
Raises ValueError - If any filtering options are invalid.

records (*, subreddit: Optional[Union[str, Set[str]]] = None, date_range: Op-
tional[Tuple[Optional[str], Optional[str]]] = None, score_range: Op-
tional[Tuple[Optional[int], Optional[int]]] = None, min_len: Optional[int] = None,
limit: Optional[int] = None) — Iterable[Tuple[str, dict]]
Iterate over comments (including text and metadata) in 1 or more files of this dataset, optionally filtering
by a variety of metadata and/or text length, in chronological order.

Parameters

4.3.

API Reference 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

textacy Documentation, Release 0.10.1

* subreddit - Filter comments for those which were posted in the specified subreddit(s).

* date_range - Filter comments for those which were posted within the interval [start,
end). Each item must be a str in ISO-standard format, i.e. some amount of YYYY-MM-
DDTHH:mm:ss. Both start and end values must be specified, but a null value for either is
automatically replaced by the minimum or maximum valid values, respectively.

* score_range — Filter comments for those whose score (# upvotes minus # downvotes)
is within the interval [low, high). Both start and end values must be specified, but a null
value for either is automatically replaced by the minimum or maximum valid values, re-
spectively.

* min_len - Filter comments for those whose body length in chars is at least this long.

e limit — Maximum number of comments passing all filters to yield. If None, all com-
ments are iterated over.

Yields Text of the next comment in dataset passing all filters, and its corresponding metadata.

Raises ValueError —If any filtering options are invalid.

Oxford Text Archive literary works
A collection of ~2.7k Creative Commons literary works from the Oxford Text Archive, containing primarily English-
language 16th-20th century literature and history.
Records include the following data:
* text: Full text of the literary work.
* title: Title of the literary work.
e author: Author(s) of the literary work.
e year: Year that the literary work was published.
e url: URL at which literary work can be found online via the OTA.
* id: Unique identifier of the literary work within the OTA.

This dataset was compiled by David Mimno from the Oxford Text Archive and stored in his GitHub repo to avoid
unnecessary scraping of the OTA site. It is downloaded from that repo, and excluding some light cleaning of its
metadata, is reproduced exactly here.

class textacy.datasets.oxford_text_archive.OxfordTextArchive (data_dir:
Union/[str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedo

packages/textacy/data/oxford_text_archive')
Stream a collection of English-language literary works from text files on disk, either as texts or text + metadata

pairs.

Download the data (one time only!), saving and extracting its contents to disk:

>>> import textacy.datasets

>>> ds = textacy.datasets.OxfordTextArchive ()
>>> ds.download()

>>> ds.info

{'"name': 'oxford_text_archive',

'site_url': 'https://ota.ox.ac.uk/"',

'description': 'Collection of ~2.7k Creative Commons texts from the Oxford Text
—Archive, containing primarily English-language 16th-20th century literature and_
—history."'} (continues on next page)

44 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.10.1

(continued from previous page)

[J

Iterate over literary works as texts or records with both text and metadata:

>>> for text in ds.texts(limit=3):
print (text[:200])

>>> for text, meta in ds.records (limit=3):
print ("\n{}, ".format (meta["title"], meta["year"]))
print (text [:300])

Filter literary works by a variety of metadata fields and text length:

>>> for text, meta in ds.records (author="Shakespeare, William", limit=1):
print ("{/\n{}".format (meta["title"], text[:500]))
>>> for text, meta in ds.records(date_range=("1900-01-01", "1990-01-01")
—1limit=5):
print (meta["year"], meta["author"])
>>> for text in ds.texts(min_len=4000000) :
print (len (text))

[

Stream literary works into a textacy.Corpus:

>>> textacy.Corpus ("en", data=ds.records (limit=5))
Corpus (5 docs; 182289 tokens)

Parameters data_dir (str or pathlib.Path)— Path to directory on disk under which dataset
is stored, i.e. /path/to/data_dir/oxford_text_archive.

full date_ range
First and last dates for which works are available, each as an ISO-formatted string (YYYY-MM-DD).

authors
Full names of all distinct authors included in this dataset, e.g. “Shakespeare, William”.

Type Set[str]

download (*, force: bool = False) — None
Download the data as a zip archive file, then save it to disk and extract its contents under the
OxfordTextArchive.data_dir directory.

Parameters force — If True, download the dataset, even if it already exists on disk under
data_dir.

property metadata
Dict[str, dict]

texts (*, author: Optional[Union[str, Set[str]]] = None, date_range: Optional[Tuple[Optional[str],
Optional[str]]] = None, min_len: Optional[int] = None, limit: Optional[int] = None) — Iter-

able[str]
Iterate over works in this dataset, optionally filtering by a variety of metadata and/or text length, and yield

texts only.
Parameters

* author - Filter texts by the authors’ name. For multiple values (Set[str]), ANY rather
than ALL of the authors must be found among a given works’s authors.

4.3. API Reference 45

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* date_range - Filter texts by the date on which it was published; both start and end date
must be specified, but a null value for either will be replaced by the min/max date available
in the dataset.

* min_len - Filter texts by the length (# characters) of their text content.
* limit — Yield no more than 1imit texts that match all specified filters.
Yields Text of the next work in dataset passing all filters.
Raises ValueError — If any filtering options are invalid.

records (* author: Optional[Union/[str, Set[str]]] = None, date_range: Optional[Tuple[Optional[str],
Optional[str]]] = None, min_len: Optional[int] = None, limit: Optional[int] = None) —
Iterable[Tuple[str, dict]]
Iterate over works in this dataset, optionally filtering by a variety of metadata and/or text length, and yield
text + metadata pairs.

Parameters

* author - Filter texts by the authors’ name. For multiple values (Set[str]), ANY rather
than ALL of the authors must be found among a given works’s authors.

* date_range - Filter texts by the date on which it was published; both start and end date
must be specified, but a null value for either will be replaced by the min/max date available
in the dataset.

* min_len — Filter texts by the length (# characters) of their text content.
* limit — Yield no more than 1imit texts that match all specified filters.
Yields Text of the next work in dataset passing all filters, and its corresponding metadata.

Raises ValueError — If any filtering options are invalid.

IMDB movie reviews
A collection of 50k highly polar movie reviews posted to IMDB, split evenly into training and testing sets, with 25k
positive and 25k negative sentiment labels, as well as some unlabeled reviews.
Records include the following key fields (plus a few others):
* text: Full text of the review.
* subset: Subset of the dataset (“train” or “test”) into which the review has been split.
* label: Sentiment label (“pos” or “neg”) assigned to the review.

* rating: Numeric rating assigned by the original reviewer, ranging from 1 to 10. Reviews with a rating <=5
are “neg”’; the rest are “pos”.

* movie_id: Unique identifier for the movie under review within IMDB, useful for grouping reviews or joining
with an external movie dataset.

Reference: Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
(2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2011).

class textacy.datasets.imdb.IMDB (data_dir=PosixPath(/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/

packages/textacy/data/imdb’))
Stream a collection of IMDB movie reviews from text files on disk, either as texts or text + metadata pairs.

Download the data (one time only!), saving and extracting its contents to disk:

46 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

>>> import textacy.datasets

>>> ds = textacy.datasets.IMDB ()
>>> ds.download()

>>> ds.info

{'name': 'imdb',
'site_url': 'http://ai.stanford.edu/~amaas/data/sentiment’,
'description': 'Collection of 50k highly polar movie reviews split evenly into

—train and test sets, with 25k positive and 25k negative labels. Also includes,,
—some unlabeled reviews.'}

Iterate over movie reviews as texts or records with both text and metadata:

>>> for text in ds.texts(limit=5):
print (text)
>>> for text, meta in ds.records (limit=5):
print ("\n \n/{}".format (meta["label"], metal["rating"], text))

Filter movie reviews by a variety of metadata fields and text length:

>>> for text, meta in ds.records(label="pos", limit=5):
print (meta["rating"], ":", text)

>>> for text, meta in ds.records(rating_range=(9, 11), limit=5):
print (meta["rating"], text)

>>> for text in ds.texts(min_len=1000, limit=5):
print (len (text))

Stream movie reviews into a textacy.Corpus:

>>> textacy.Corpus ("en", data=ds.records (limit=100))
Corpus (100 docs; 24340 tokens)

Parameters data_dir — Path to directory on disk under which the data is stored, i.e. /path/
to/data_dir/imdb.

full_ rating range
Lowest and highest ratings for which movie reviews are available.

download (*, force: bool = False) — None
Download the data as a compressed tar archive file, then save it to disk and extract its contents under the
data_dir directory.

Parameters force — If True, always download the dataset even if it already exists on disk
under data_dir.

texts (*, subset: Optional[str] = None, label: Optional[str] = None, rating_range: Op-
tional[Tuple[Optional[int], Optional[int]]] = None, min_len: Optional[int] = None, limit: Op-

tional[int] = None) — Iterable[str]
Iterate over movie reviews in this dataset, optionally filtering by a variety of metadata and/or text length,

and yield texts only.
Parameters

* subset ({"train", "test"}) — Filter movie reviews by the dataset subset into
which they’ve already been split.

* label ({"pos", "neg", "unsup"})- Filter movie reviews by the assigned senti-
ment label (or lack thereof, for “unsup”).

4.3. API Reference 47

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* rating_range — Filter movie reviews by the rating assigned by the reviewer. Only
those with ratings in the interval [low, high) are included. Both low and high values
must be specified, but a null value for either is automatically replaced by the minimum
or maximum valid values, respectively.

* min_len - Filter reviews by the length (# characters) of their text content.
e limit — Yield no more than 1imit reviews that match all specified filters.
Yields Text of the next movie review in dataset passing all filters.
Raises ValueError - If any filtering options are invalid.

records (*, subset: Optional[str] = None, label: Optional[str] = None, rating_range: Op-
tional[Tuple[Optional[int], Optional[int]]] = None, min_len: Optional[int] = None, limit:
Optional[int] = None) — Iterable[Tuple[str, dict]]
Iterate over movie reviews in this dataset, optionally filtering by a variety of metadata and/or text length,

and yield text + metadata pairs.
Parameters

* subset ({"train", "test"}) — Filter movie reviews by the dataset subset into
which they’ve already been split.

* label ({"pos", "neg", "unsup"})- Filter movie reviews by the assigned senti-
ment label (or lack thereof, for “unsup”).

* rating_range — Filter movie reviews by the rating assigned by the reviewer. Only
those with ratings in the interval [low, high) are included. Both low and high values
must be specified, but a null value for either is automatically replaced by the minimum
or maximum valid values, respectively.

* min_len - Filter reviews by the length (# characters) of their text content.
* limit - Yield no more than 1imit reviews that match all specified filters.
Yields Text of the next movie review in dataset passing all filters, and its corresponding metadata.

Raises ValueError - If any filtering options are invalid.

UDHR translations
A collection of translations of the Universal Declaration of Human Rights (UDHR), a milestone document in the
history of human rights that first, formally established fundamental human rights to be universally protected.
Records include the following fields:
e text: Full text of the translated UDHR document.
* lang: ISO-639-1 language code of the text.
* lang_name: Ethnologue entry for the language (see https://www.ethnologue.com).

The source dataset was compiled and is updated by the Unicode Consortium as a way to demonstrate the use of
unicode in representing a wide variety of languages. In fact, the UDHR was chosen because it’s been translated into
more languages than any other document! However, this dataset only provides access to records translated into ISO-
639-1 languages — that is, major living languages only, rather than every language, major or minor, that has ever
existed. If you need access to texts in those other languages, you can find them at UDHR._texts_dirpath.

For more details, go to https://unicode.org/udhr.

48 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://www.ethnologue.com
https://unicode.org/udhr

textacy Documentation, Release 0.10.1

class textacy.datasets.udhr.UDHR (data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/0.10.1/1ib/

packages/textacy/data/udhr'))
Stream a collection of UDHR translations from disk, either as texts or text + metadata pairs.

Download the data (one time only!), saving and extracting its contents to disk:

>>> import textacy.datasets

>>> ds = textacy.datasets.UDHR()
>>> ds.download()

>>> ds.info

{'name': 'udhr',
'site_url': 'http://www.ohchr.org/EN/UDHR',
'description': 'A collection of translations of the Universal Declaration of

—Human Rights (UDHR), a milestone document in the history of human rights that
—first, formally established fundamental human rights to be universally,,
—protected. '}

Iterate over translations as texts or records with both text and metadata:

>>> for text in ds.texts (limit=5):
print (text[:500])
>>> for text, meta in ds.records (limit=5):
print ("\n ({})\n{}".format (meta["lang_name"], meta["lang"], text[:500]))

Filter translations by language, and note that some languages have multiple translations:

>>> for text, meta in ds.records(lang="en"):

print ("\n (y\n/{/".format (meta["lang_name"], meta["lang"], text[:500]))
>>> for text, meta in ds.records(lang="zh"):
print ("\n (y\n{}".format (meta["lang_name"], meta["lang"], text[:500]))

Note: Streaming translations into a textacy. Corpus doesn’t work as for other available datasets, since this
dataset is multilingual.

Parameters data_dir (stror pathlib.Path)— Path to directory on disk under which the data
is stored, i.e. /path/to/data_dir/udhr.

langs
All distinct language codes with texts in this dataset, e.g. “en” for English.

Type Set[str]

download (*, force: bool = False) — None
Download the data as a zipped archive of language-specific text files, then save it to disk and extract its
contents under the data_dir directory.

Parameters force — If True, download the dataset, even if it already exists on disk under
data_dir.

texts (* lang: Optional[Union[str, Set[str]]] = None, limit: Optional[int] = None) — Iterable[str]
Iterate over records in this dataset, optionally filtering by language, and yield texts only.

Parameters
* lang - Filter records by the language in which they’re written; see UDHR. 1angs.
* limit — Yield no more than 1imit texts that match specified filter.

Yields Text of the next record in dataset passing filters.

Raises ValueError - If any filtering options are invalid.

4.3. API Reference 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

recorxds (*, lang: Optional[Union[str, Set[str]]] = None, limit: Optional[int] = None) — Iter-
able[Tuple[str, dict]]
Iterate over reocrds in this dataset, optionally filtering by a language, and yield text + metadata pairs.

Parameters
* lang - Filter records by the language in which they’re written; see UDHR. 1angs.
* limit — Yield no more than 1imit texts that match specified filter.

Yields Text of the next record in dataset passing filters, and its corresponding metadata.

Raises ValueError — If any filtering options are invalid.

4.3.4 Resources

ConceptNet

ConceptNet is a multilingual knowledge base, representing common words and phrases and the common-sense rela-
tionships between them. This information is collected from a variety of sources, including crowd-sourced resources
(e.g. Wiktionary, Open Mind Common Sense), games with a purpose (e.g. Verbosity, nadya.jp), and expert-created
resources (e.g. WordNet, JMDict).

The interface in textacy gives access to several key relationships between terms that are useful in a variety of NLP
tasks:

class textacy.resources.concept_net.ConceptNet (data_dir=PosixPath(/home/docs/checkouts/readthedocs.org/user

* antonyms: terms that are opposites of each other in some relevant way
* hyponyms: terms that are subtypes or specific instances of other terms
e meronyms: terms that are parts of other terms

e synonyms: terms that are sufficiently similar that they may be used interchangeably

packages/textacy/data/concept_net'),

version="'5.7.0")
Interface to ConceptNet, a multilingual knowledge base representing common words and phrases and the

common-sense relationships between them.

Download the data (one time only!), and save its contents to disk:

>>> import textacy.resources
>>> rs = textacy.resources.ConceptNet ()
>>> rs.download ()
>>> rs.info
{'name': 'concept_net',
'site_url': 'http://conceptnet.io',
'publication_url': 'https://arxiv.org/abs/1612.03975"',
'description': 'An open, multilingual semantic network of general knowledge,
—~designed to help computers understand the meanings of words.'}

Access other same-language terms related to a given term in a variety of ways:

>>> rs.get_synonyms ("spouse", lang="en", sense="n")

['mate', 'married person', 'better half', 'partner']

>>> rs.get_antonyms ("love", lang="en", sense="v")

['detest', 'hate', 'loathe']

>>> rs.get_hyponyms ("marriage", lang="en", sense="n")

['cohabitation situation', 'union', 'legal agreement', 'ritual', 'family',
— 'marital status']

50

Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

Note: The very first time a given relationship is accessed, the full ConceptNet db must be parsed and split for
fast future access. This can take a couple minutes; be patient.

When passing a spaCy Token or Span, the corresponding 1ang and sense are inferred automatically from

the object:

>>> text = "The quick brown fox jumps over the lazy dog."

>>> doc = textacy.make_spacy_doc (text, lang="en")

>>> rs.get_synonyms (doc[1l]) # quick

["flying', 'fast', 'rapid', 'ready', 'straightaway', 'nimble', 'speedy', 'warm']
>>> rs.get_synonyms (doc[4:5]) # jumps over

["leap', 'startle', 'hump', 'flinch', 'jump off', 'skydive', 'Jjumpstart', ...]

Many terms won’t have entries, for actual linguistic reasons or because the db’s coverage of a given language’s
vocabulary isn’t comprehensive:

>>> rs.get_meronyms (doc[3]) # fox
[]
>>> rs.get_antonyms (doc[7]) # lazy
[]

Parameters

* data_dir(strorpathlib.Path)— Path to directory on disk under which resource data
is stored, i.e. /path/to/data_dir/concept_net.

* version({"5.7.0", "5.6.0", "5.5.5"})— Version string of the ConceptNet db
to use. Since newer versions typically represent improvements over earlier versions, you’ll
probably want “5.7.0” (the default value).

download (*, force=False)
Download resource data as a gzipped csv file, then save it to disk under the ConceptNet.data_dir
directory.

Parameters force (bool)—If True, download resource data, even if it already exists on disk;
otherwise, don’t re-download the data.

property filepath
Full path on disk for the ConceptNet gzipped csv file corresponding to the given ConceptNet.
data_dir.

Type str

property antonyms
Mapping of language code to term to sense to set of term’s antonyms — opposites of the term in some
relevant way, like being at opposite ends of a scale or fundamentally similar but with a key difference
between them — such as black <=> white or hot <=> cold. Note that this relationship is symmetric.

Based on the “/r/Antonym” relation in ConceptNet.
Type Dict[str, Dict[str, Dict[str, List[str]]]]
get_antonyms (term, *, lang=None, sense=None)
Parameters
e term (stror spacy.tokens.Token or spacy.tokens.Span)—
* lang (str)— Standard code for the language of term.

* sense (str)— Sense in which term is used in context, which in practice is just its part
of speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”".

4.3. API Reference 51

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Returns List[str]

property hyponyms
Mapping of language code to term to sense to set of term’s hyponyms — subtypes or specific instances of
the term — such as car => vehicle or Chicago => city. Every A is a B.

Based on the “/t/IsA” relation in ConceptNet.
Type Dict[str, Dict[str, Dict[str, List[str]]]]
get_hyponyms (term, *, lang=None, sense=None)
Parameters
* term (stror spacy.tokens.Token or spacy.tokens.Span) —
* lang (str) - Standard code for the language of term.

* sense (str)— Sense in which term is used in context, which in practice is just its part
of speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”".

Returns List[str]

property meronyms

Mapping of language code to term to sense to set of term’s meronyms — parts of the term — such as gearshift
=> car.

Based on the “/r/PartOf” relation in ConceptNet.
Type Dict[str, Dict[str, Dict[str, List[str]]]]
get_meronyms (term, *, lang=None, sense=None)
Parameters
e term (stror spacy.tokens.Token or spacy.tokens.Span)—
* lang (str) - Standard code for the language of term.

* sense (str)— Sense in which term is used in context, which in practice is just its part
of speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”’.

Returns List[str]

property synonyms
Mapping of language code to term to sense to set of term’s synonyms — sufficiently similar concepts

that they may be used interchangeably — such as sunlight <=> sunshine. Note that this relationship is
symmetric.

Based on the “/r/Synonym” relation in ConceptNet.
Type Dict[str, Dict[str, Dict[str, List[str]]]]
get_synonyms (term, *, lang=None, sense=None)
Parameters
e term (stror spacy.tokens.Token or spacy.tokens.Span)—
* lang (str) - Standard code for the language of term.

* sense (str)— Sense in which term is used in context, which in practice is just its part
of speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”".

Returns List[str]

52 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

DepecheMood

DepecheMood is a high-quality and high-coverage emotion lexicon for English and Italian text, mapping individual
terms to their emotional valences. These word-emotion weights are inferred from crowd-sourced datasets of emotion-
ally tagged news articles (rappler.com for English, corriere.it for Italian).

English terms are assigned weights to eight emotions:
* AFRAID
* AMUSED
* ANGRY
* ANNOYED
« DONT_CARE
* HAPPY
« INSPIRED
* SAD
Italian terms are assigned weights to five emotions:
¢ DIVERTITO (~amused)
INDIGNATO (~annoyed)
PREOCCUPATO (~afraid)
SODDISFATTO (~happy)
TRISTE (~sad)

class textacy.resources.depeche_mood.DepecheMood (data_dir=PosixPath('/home/docs/checkouts/readthedocs.org/u
packages/textacy/data/depeche_mood'),
lang='en’, word_rep="lemmapos’,
min_freq=3)
Interface to DepecheMood, an emotion lexicon for English and Italian text.

Download the data (one time only!), and save its contents to disk:

>>> import textacy.resources
>>> rs = textacy.resources.DepecheMood (lang="en", word_rep="lemmapos")
>>> rs.download()
>>> rs.info
{'name': 'depeche_mood"',
'site_url': 'http://www.depechemood.eu',
'publication_url': 'https://arxiv.org/abs/1810.03660"',
'description': 'A simple tool to analyze the emotions evoked by a text.'}

Access emotional valences for individual terms:

>>> rs.get_emotional_valence ("disease#n")
{"AFRAID': 0.37093526222120465,
'AMUSED': 0.06953745082761113,
'"ANGRY': 0.06979683067736414,
'"ANNOYED': 0.06465401081252636,
'DONT_CARE': 0.07080580707440012,
'"HAPPY': 0.07537324330608403,
'"INSPIRED': 0.13394731320662606,
'SAD': 0.14495008187418348}

(continues on next page)

4.3. API Reference 53

textacy Documentation, Release 0.10.1

(continued from previous page)

>>> rs.get_emotional_valence ("heal#v")

{"AFRAID': 0.060450319886187334,
'AMUSED': 0.09284046387491741,
'ANGRY': 0.06207816933776029,
'"ANNOYED': 0.10027622719958346,
'DONT_CARE': 0.11259594401785,
'"HAPPY': 0.09946106491457314,
'"INSPIRED': 0.37794768332634626,
'SAD': 0.09435012744278205}

When passing multiple terms in the form of a List[str] or Span or Doc, emotion weights are averaged over all

terms for which weights are available:

>>> rs.get_emotional_valence (["disease#n", "heal#v"])
{'"AFRAID': 0.215692791053696,

'"AMUSED': 0.08118895735126427,

'"ANGRY': 0.06593750000756221,

'"ANNOYED': 0.08246511900605491,

'DONT_CARE': 0.09170087554612506,

'"HAPPY': 0.08741715411032858,

'"INSPIRED': 0.25594749826648616,

'SAD': 0.11965010465848278}

>>> doc = textacy.make_spacy_doc (text, lang="en")
>>> rs.get_emotional_valence (doc)
{"AFRAID': 0.05272350876803627,

'AMUSED': 0.137250549925950098,

'"ANGRY': 0.15787016147081184,

'"ANNOYED': 0.1398733360688608,

'DONT_CARE': 0.14356943460620503,

'"HAPPY': 0.11923217912716871,

'"INSPIRED': 0.17880214720077342,

'SAD': 0.07067868283219296}
>>> rs.get_emotional_valence (doc[0:6]) # the acting was sweet and amazing
{'"AFRAID': 0.039790959333750785,

'AMUSED': 0.1346884072825313,

'"ANGRY': 0.1373596223131593,

'"ANNOYED': 0.11391999698695347,

'DONT_CARE': 0.1574819173485831,

'"HAPPY': 0.1552521762333925,

'"INSPIRED': 0.21232264216449326,

'SAD': 0.049184278337136296}

>>> text = "The acting was sweet and amazing, but the plot was dumb and terrible."

For good measure, here’s how Italian w/o POS-tagged words looks:

>>> rs = textacy.resources.DepecheMood (lang="1it", word_rep="lemma")
>>> rs.get_emotional_valence ("amore")
{"INDIGNATO': 0.11451408951814121,

'PREOCCUPATO"': 0.1323655108545536,

'TRISTE': 0.182496635604006009,

'DIVERTITO': 0.33558928569110086,

'SODDISFATTO': 0.23503447833219815}

Parameters

* data_dir (strorpathlib.Path)— Path to directory on disk under which resource data
is stored, i.e. /path/to/data_dir/depeche_mood.

54 Chapter 4. contents

https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.10.1

* lang ({"en", "it"})— Standard two-letter code for the language of terms for which
emotional valences are to be retrieved.

* word_rep ({"token", "lemma", "lemmapos"})— Level of text processing used
in computing terms’ emotion weights. “token” => tokenization only; “lemma” => tokeniza-
tion and lemmatization; “lemmapos” => tokenization, lemmatization, and part-of-speech

tagging.

* min_freq (int)- Minimum number of times that a given term must have appeared in the
source dataset for it to be included in the emotion weights dict. This can be used to remove
noisy terms at the expense of reducing coverage. Researchers observed peak performance
at 10, but anywhere between 1 and 20 is reasonable.

property filepath
Full path on disk for the DepecheMood tsv file corresponding to the 1ang and word_rep.

Type str

property weights
Mapping of term string (or term#POS, if DepecheMood.word_rep is “lemmapos”) to the terms’ nor-
malized weights on a fixed set of affective dimensions (aka “emotions”).

Type Dict[str, Dict[str, float]]

download (*, force=False)
Download resource data as a zip archive file, then save it to disk and extract its contents under the
data_dir directory.

Parameters force (bool) — If True, download the resource, even if it already exists on disk
under data_dir.

get_emotional_valence (ferms)
Get average emotional valence over all terms in terms for which emotion weights are available.

Parameters terms (str or Sequence[str], Token or Sequence[Token]) — One or more terms
over which to average emotional valences. Note that only nouns, adjectives, adverbs, and
verbs are included.

Note: If the resource was initialized with word_rep="1emmapos", then string terms

must have matching parts-of-speech appended to them like TERM#POS. Only “n” => noun,
“v” => verb, “a” => adjective, and “r” => adverb are included in the data.

Returns Mapping of emotion to average weight.

Return type Dict[str, float]

4.3.5 Text (Pre-)Processing

normalize.normalize_hyphenated_words Normalize words in text that have been split across
lines by a hyphen for visual consistency (aka hyphen-
ated) by joining the pieces back together, sans hyphen
and whitespace.
normalize.normalize_quotation_marks Normalize all “fancy” single- and double-quotation
marks in text to just the basic ASCII equivalents.
continues on next page

4.3. API Reference 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

Table 3 — continued from previous page

normalize.normalize repeating chars Normalize repeating characters in text by truncating
their number of consecutive repetitions to maxn.

normalize.normalize unicode Normalize unicode characters in text into canonical
forms.

normalize.normalize_whitespace Replace all contiguous zero-width spaces with an empty

string, line-breaking spaces with a single newline, and
non-breaking spaces with a single space, then strip any
leading/trailing whitespace.

remove.remove_accents Remove accents from any accented unicode characters
in text, either by replacing them with ASCII equiva-
lents or removing them entirely.

remove.remove_punctuation Remove punctuation from text by replacing all in-
stances of marks with whitespace.

replace.replace_currency_symbols Replace all currency symbols in text with
replace_with.

replace.replace_emails Replace all email addresses in text with
replace_with.

replace.replace_emojis Replace all emoji and pictographs in text with
replace_with.

replace.replace_hashtags Replace all hashtags in text with replace_with.

replace.replace_numbers Replace all numbers in text with replace_with.

replace.replace_phone_numbers Replace all phone numbers in text with
replace_with.

replace.replace_urls Replace all URLs in text with replace_with.

replace.replace_user_handles Replace all user handles in text with

replace_with.

Normalize

textacy.preprocessing.normalize: Normalize aspects of raw text that may vary in problematic ways.

textacy.preprocessing.normalize.normalize_hyphenated_words (fext: sir) — str
Normalize words in text that have been split across lines by a hyphen for visual consistency (aka hyphenated)
by joining the pieces back together, sans hyphen and whitespace.

textacy.preprocessing.normalize.normalize_quotation_marks (fext: sir) — str
Normalize all “fancy” single- and double-quotation marks in text to just the basic ASCII equivalents. Note
that this will also normalize fancy apostrophes, which are typically represented as single quotation marks.

textacy.preprocessing.normalize.normalize_repeating_chars (fext: str, *, chars: str,

: . . .) maxn: int = 1) — str
Normalize repeating characters in text by truncating their number of consecutive repetitions to maxn.

Parameters
* text -

* chars — One or more characters whose consecutive repetitions are to be normalized, e.g.
669 13 kE
Jor “71”.

* maxn — Maximum number of consecutive repetitions of chars to which longer repetitions
will be truncated.

Returns str

56 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

textacy.preprocessing.normalize.normalize_unicode (text: str, *, form: str = 'NFC') —
Normalize unicode characters in text into canonical forms. o
Parameters
* text -

e form ({"NFC", "NFD", "NFKC", "NFKD"}) — Form of normalization applied to
unicode characters. For example, an “e” with accute accent “” can be written as “e”™
(canonical decomposition, “NFD”) or “€” (canonical composition, “NFC”). Unicode can
be normalized to NFC form without any change in meaning, so it’s usually a safe bet. If
“NFKC”, additional normalizations are applied that can change characters’ meanings, e.g.
ellipsis characters are replaced with three periods.

See also:
https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

textacy.preprocessing.normalize.normalize_whitespace (text: str) — str
Replace all contiguous zero-width spaces with an empty string, line-breaking spaces with a single newline, and
non-breaking spaces with a single space, then strip any leading/trailing whitespace.

Remove

textacy.preprocessing. remove: Remove aspects of raw text that may be unwanted for certain use cases.

textacy.preprocessing.remove.remove_accents (fext: str, *, fast: bool = False) — str
Remove accents from any accented unicode characters in text, either by replacing them with ASCII equiva-
lents or removing them entirely.

Parameters
s text -

» fast - If False, accents are removed from any unicode symbol with a direct ASCII equiv-
alent; if True, accented chars for all unicode symbols are removed, regardless.

Note: fast=True can be significantly faster than fast=False, but its transformation
of text is less “safe” and more likely to result in changes of meaning, spelling errors, etc.

Returns str
Raises ValueError — If method is not in {“unicode”, “ascii”}.
See also:
For a more powerful (but slower) alternative, check out unidecode: https://github.com/avian2/unidecode

textacy.preprocessing.remove.remove_punctuation (fext: str, * marks: Optional[str] =

)]) None) — str
Remove punctuation from text by replacing all instances of marks with whitespace.

Parameters
s text -

* marks — Remove only those punctuation marks specified here. For example, “,;:” removes
commas, semi-colons, and colons. If None, all unicode punctuation marks are removed.

Returns str

4.3. API Reference 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/avian2/unidecode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Note: When marks=None, Python’sbuilt-in str.translate () isused to remove punctuation; otherwise,
a regular expression is used. The former’s performance is about 5-10x faster.

Replace

textacy.preprocessing. replace: Replace parts of raw text that are semantically important as members of
a group but not so much in the individual instances.

textacy.preprocessing.replace.replace_currency_symbols (fext: str, replace_with: str =

" CUR_'") — str
Replace all currency symbols in text with replace_with.
textacy.preprocessing.replace.replace_emails (fext: str, replace_with: str = '_EMAIL_')
Replace all email addresses in text with replace_with.% s
textacy.preprocessing.replace.replace_emoijis (fext: str, replace_with: str = '"_EMOJI_’)

— str
Replace all emoji and pictographs in text with replace_with.

Note: If your Python has a narrow unicode build (“USC-2"), only dingbats and miscellaneous symbols are
replaced because Python isn’t able to represent the unicode data for things like emoticons. Sorry!

textacy.preprocessing.replace.replace_hashtags (fext: str, replace_with: str = '_TAG_')
— Str
Replace all hashtags in text with replace_with.
textacy.preprocessing.replace.replace_numbers (fext: str, replace_with: str = '"_NUM-
BER ') — str

Replace all numbers in text with replace_with.

textacy.preprocessing.replace.replace_phone_numbers (text: str, replace_with: str =

" PHONE ') —» str
Replace all phone numbers in text with replace_with.

textacy.preprocessing.replace.replace_urls (text: str, replace_with: str = '_URL_') — str
Replace all URLs in text with replace_with.

textacy.preprocessing.replace.replace_user_handles (text: str, replace_with: str =

"USER ') — str
Replace all user handles in text with replace_with.
4.3.6 Information Extraction
words Extract an ordered sequence of words from a document

processed by spaCy, optionally filtering words by part-
of-speech tag and frequency.

ngrams Extract an ordered sequence of n-grams (n consecu-
tive words) from a spacy-parsed doc, optionally filtering
n-grams by the types and parts-of-speech of the con-
stituent words.

continues on next page

58 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str.translate
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Table 4 — continued from previous page

entities Extract an ordered sequence of named entities (PER-
SON, ORG, LOC, etc.) from a Doc, optionally filtering
by entity types and frequencies.

noun_chunks Extract an ordered sequence of noun chunks from a
spacy-parsed doc, optionally filtering by frequency and
dropping leading determiners.

pos_regex_matches Extract sequences of consecutive tokens from a spacy-
parsed doc whose part-of-speech tags match the speci-
fied regex pattern.

matches Extract Span s from a Doc matching one or more pat-
terns of per-token attr:value pairs, with optional quantity
qualifiers.

subject_verb object_triples Extract an ordered sequence of subject-verb-object
(SVO) triples from a spacy-parsed doc.

acronyms_and_definitions Extract a collection of acronyms and their most likely
definitions, if available, from a spacy-parsed doc.

semistructured_statements Extract “semi-structured statements” from a spacy-
parsed doc, each as a (entity, cue, fragment) triple.

direct_quotations Baseline, not-great attempt at direction quotation ex-

traction (no indirect or mixed quotations) using rules
and patterns.

textacy.extract: Functions to extract various elements of interest from documents already parsed by spaCy,
such as n-grams, named entities, subject-verb-object triples, and acronyms.

textacy.extract.words (doc: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span], *, filter_stops:
bool = True, filter_punct: bool = True, filter_nums: bool = False, include_pos:
Optional[Union[str, Set[str]]] = None, exclude_pos: Optional[Union[str,
Set[str]]] = None, min_freq: int = 1) — Iterable[spacy.tokens.token.Token]
Extract an ordered sequence of words from a document processed by spaCy, optionally filtering words by part-

of-speech tag and frequency.

Parameters
* doc -
* filter_stops - If True, remove stop words from word list.
* filter_ punct - If True, remove punctuation from word list.
e filter nums - If True, remove number-like words (e.g. 10, “ten”) from word list.
* include_pos — Remove words whose part-of-speech tag IS NOT in the specified tags.
* exclude_pos — Remove words whose part-of-speech tag IS in the specified tags.
* min_freq - Remove words that occur in doc fewer than min_ freqg times.

Yields Next token from doc passing specified filters in order of appearance in the document.

Raises TypeError —if include_pos or exclude_pos is not a str, a set of str, or a falsy value

Note: Filtering by part-of-speech tag uses the universal POS tag set; for details, check spaCy’s docs: https:
/Ispacy.io/api/annotation#pos-tagging

4.3. API Reference 59

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#pos-tagging

textacy Documentation, Release 0.10.1

textacy.extract.ngrams (doc: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span], n: int, *, fil-
ter_stops: bool = True, filter_punct: bool = True, filter_nums: bool =
False, include_pos: Optional[Union[str, Set[str]]] = None, exclude_pos:
Optional[Union[str, Set[str]]] = None, min_freq: int = 1) — lter-
able[spacy.tokens.span.Span]
Extract an ordered sequence of n-grams (n consecutive words) from a spacy-parsed doc, optionally filtering

n-grams by the types and parts-of-speech of the constituent words.
Parameters
* doc -
* n — Number of tokens per n-gram; 2 => bigrams, 3 => trigrams, etc.
* filter_ stops - If True, remove ngrams that start or end with a stop word
* filter_ punct - If True, remove ngrams that contain any punctuation-only tokens

* filter nums - If True, remove ngrams that contain any numbers or number-like tokens
(e.g. 10, ‘ten’)

* include_pos — Remove ngrams if any constituent tokens’ part-of-speech tags ARE NOT
included in this param

* exclude_pos — Remove ngrams if any constituent tokens’ part-of-speech tags ARE in-
cluded in this param

* min_freq - Remove ngrams that occur in doc fewer than min_ freq times
Yields Next ngram from doc passing all specified filters, in order of appearance in the document
Raises

* ValueError—ifn<1

* TypeError — if include_pos or exclude_pos is not a str, a set of str, or a falsy
value

Note: Filtering by part-of-speech tag uses the universal POS tag set; for details, check spaCy’s docs: https:
/Ispacy.io/api/annotation#pos-tagging

textacy.extract.entities (doc: spacy.tokens.doc.Doc, *, include_types: Optional[Union/str,
Set[str]]] = None, exclude_types: Optional[Union[str, Set[str]]] =
None, drop_determiners: bool = True, min_freq: int = 1) — lter-

able[spacy.tokens.span.Span]
Extract an ordered sequence of named entities (PERSON, ORG, LOC, etc.) from a Doc, optionally filtering by

entity types and frequencies.
Parameters
* doc -

* include_types — Remove entities whose type IS NOT in this param; if “NUMERIC”,
all numeric entity types (“DATE”, “MONEY”, “ORDINAL”, etc.) are included

* exclude_types — Remove entities whose type IS in this param; if “NUMERIC”, all
numeric entity types (“DATE”, “MONEY”, “ORDINAL”, etc.) are excluded

* drop_determiners — Remove leading determiners (e.g. “the”) from entities (e.g. “the
United States” => “United States”).

60 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#pos-tagging
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

Note: Entities from which a leading determiner has been removed are, effectively, new
entities, and not saved to the Doc from which they came. This is irritating but unavoidable,
since this function is not meant to have side-effects on document state. If you’re only us-
ing the text of the returned spans, this is no big deal, but watch out if you’re counting on
determiner-less entities associated with the doc downstream.

* min_freq - Remove entities that occur in doc fewer than min_freqg times
Yields Next entity from doc passing all specified filters in order of appearance in the document

Raises TypeError —if include_types orexclude_types is not astr, a set of str, or a falsy
value

textacy.extract.noun_chunks (doc: spacy.tokens.doc.Doc, *, drop_determiners: bool = True,
min_freq: int = 1) — Iterable[spacy.tokens.span.Span]
Extract an ordered sequence of noun chunks from a spacy-parsed doc, optionally filtering by frequency and
dropping leading determiners.

Parameters
* doc —

* drop_determiners — Remove leading determiners (e.g. “the”) from phrases (e.g. “the
quick brown fox” => “quick brown fox”)

* min_freq - Remove chunks that occur in doc fewer than min_ freq times
Yields Next noun chunk from doc in order of appearance in the document

textacy.extract.pos_regex_matches (doc: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span],
pattern: str) — Iterable[spacy.tokens.span.Span]
Extract sequences of consecutive tokens from a spacy-parsed doc whose part-of-speech tags match the specified

regex pattern.
Parameters
* doc -

* pattern - Pattern of consecutive POS tags whose corresponding words are to be extracted,
inspired by the regex patterns used in NLTK’s nitk.chunk.regexp. Tags are uppercase, from
the universal tag set; delimited by < and >, which are basically converted to parentheses
with spaces as needed to correctly extract matching word sequences; white space in the
input doesn’t matter.

Examples (see constants.POS_REGEX_PATTERNS):
— noun phrase: r’<DET>? (<NOUN>+ <ADPICONJ>)* <NOUN>+’

compound nouns: r’<NOUN>+’
verb phrase: ' <VERB>7<ADV>*<VERB>+’
prepositional phrase: r’<PREP> <DET>? (<NOUN>+<ADP>)* <NOUN>+’

Yields Next span of consecutive tokens from doc whose parts-of-speech match pattern, in order
of appearance

Warning: DEPRECATED! For similar but more powerful and performant functionality, use textacy.
extract.matches () instead.

4.3. API Reference 61

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

textacy.extract .matches (doc: spacy.tokens.doc.Doc, patterns: Union[str, List[str], List[Dict{str,
str]], List[List[Dict[str, str]]]], *, on_match: Callable = None) — Iter-

able[spacy.tokens.span.Span]
Extract Span s from a Doc matching one or more patterns of per-token attr:value pairs, with optional quantity

qualifiers.
Parameters
e doc —

* patterns — One or multiple patterns to match against doc using a spacy .matcher.
Matcher.

If List[dict] or List[List[dict]], each pattern is specified as attr: value pairs per token, with
optional quantity qualifiers:

— [{"POS": "NOUN"}] matches singular or plural nouns, like “friend” or “enemies”
—_ [{"POS": "PREP"}, {"POS": "DET"’ "OP": "?"}, {"POS":
"ADJ" , " OP "w : n ? n } , { "POS n : "NOUN n , n OP " : " + n }] matches

prepositional phrases, like “in the future” or “from the distant past”

[{"IS_DIGIT": True}, {"TAG": "NNS"}] matches numbered plural
nouns, like “60 seconds” or “2 beers”

[{"POS": "PROPN", "OP": "+"}, {}] matches proper nouns and whatever
word follows them, like “Burton DeWilde yaaasss”

If str or List[str], each pattern is specified as one or more per-token patterns separated by
whitespace where attribute, value, and optional quantity qualifiers are delimited by colons.
Note that boolean and integer values have special syntax — “bool(val)” and “int(val)”, re-
spectively — and that wildcard tokens still need a colon between the (empty) attribute and
value strings.

— "POS:NOUN" matches singular or plural nouns

— "POS:PREP POS:DET:? POS:ADJ:? POS:NOUN:+" matches prepositional
phrases

— "IS_DIGIT:bool (True) TAG:NNS" matches numbered plural nouns
— "POS:PROPN:+ :" matches proper nouns and whatever word follows them

Also note that these pattern strings don’t support spaCy v2.1’s “extended” pattern syntax; if
you need such complex patterns, it’s probably better to use a List[dict] or List[List[dict]],
anyway.

* on_match — Callback function to act on matches. Takes the arguments matcher, doc,
i and matches.

Yields Next matching Span in doc, in order of appearance
Raises

e TypeError —

* ValueError —

See also:

* https://spacy.io/usage/rule-based-matching

* https://spacy.io/api/matcher

62 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://spacy.io/usage/rule-based-matching
https://spacy.io/api/matcher

textacy Documentation, Release 0.10.1

textacy.extract.subject_verb_object_triples (doc: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span]) — Iter-
able[Tuple[spacy.tokens.span.Span,
spacy.tokens.span.Span,

spacy.tokens.span.Span]]
Extract an ordered sequence of subject-verb-object (SVO) triples from a spacy-parsed doc. Note that this only

works for SVO languages.
Parameters doc —

Yields Next 3-tuple of spans from doc representing a (subject, verb, object) triple, in order of

appearance
textacy.extract.acronyms_and_definitions (doc: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span], known_acro_defs:
Optional[Dict[str, str]] = None) — Dict[str,
List[str]]

Extract a collection of acronyms and their most likely definitions, if available, from a spacy-parsed doc. If
multiple definitions are found for a given acronym, only the most frequently occurring definition is returned.

Parameters
* doc—

* known_acro_defs — If certain acronym/definition pairs are known, pass them in as
{acronym (str): definition (str)}; algorithm will not attempt to find new definitions

Returns Unique acronyms (keys) with matched definitions (values)

References

Taghva, Kazem, and Jeff Gilbreth. “Recognizing acronyms and their definitions.” International Journal on
Document Analysis and Recognition 1.4 (1999): 191-198.

textacy.extract.semistructured_statements (doc: spacy.tokens.doc.Doc, entity: str, *, cue:

str = 'be', ignore_entity_case: bool = True,
min_n_words: int = I, max_n_words: int = 20)
— Tuple[Union[spacy.tokens.span.Span,

spacy.tokens.token.Token],
Union[spacy.tokens.span.Span,
spacy.tokens.token.Token],

spacy.tokens.span.Span]
Extract “semi-structured statements” from a spacy-parsed doc, each as a (entity, cue, fragment) triple. This is

similar to subject-verb-object triples.
Parameters
* doc -

ELINT3

* entity — anoun or noun phrase of some sort (e.g. “President Obama”, “global warming”,
“Python”)

* cue — verb lemma with which ent ity is associated (e.g. “talk about”, “have”, “write”)
* ignore_entity_case - If True, entity matching is case-independent
* min_n_words — Min number of tokens allowed in a matching fragment
* max_n_words — Max number of tokens allowed in a matching fragment

Yields Next matching triple, consisting of (entity, cue, fragment).

4.3. API Reference 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

Notes
Inspired by N. Diakopoulos, A. Zhang, A. Salway. Visual Analytics of Media Frames in Online News and
Blogs. IEEE InfoVis Workshop on Text Visualization. October, 2013.

Which itself was inspired by by Salway, A.; Kelly, L.; Skadina, L.; and Jones, G. 2010. Portable Extraction of
Partially Structured Facts from the Web. In Proc. ICETAL 2010, LNAI 6233, 345-356. Heidelberg, Springer.

textacy.extract.direct_quotations (doc: spacy.tokens.doc.Doc) — It-

erable[Tuple[spacy.tokens.span.Span,

spacy.tokens.token.Token, spacy.tokens.span.Span]]
Baseline, not-great attempt at direction quotation extraction (no indirect or mixed quotations) using rules and

patterns. English only.
Parameters doc (spacy.tokens.Doc)—

Yields Next quotation in doc as a (speaker, reporting verb, quotation) triple

Notes

Loosely inspired by Krestel, Bergler, Witte. “Minding the Source: Automatic Tagging of Reported Speech in
Newspaper Articles”.

TODO: Better approach would use ML, but needs a training dataset.

Keyterm Extraction

textrank.textrank Extract key terms from a document using the TextRank
algorithm, or a variation thereof.

yvake.yake Extract key terms from a document using the YAKE al-
gorithm.

scake.scake Extract key terms from a document using the sSCAKE
algorithm.

sgrank.sgrank Extract key terms from a document using the SGRank
algorithm.

textacy.ke.textrank.textrank (doc: spacy.tokens.doc.Doc, *, normalize: Optional[Union/str,

Callable[[spacy.tokens.token.Token], str]]] = 'lemma’, include_pos:
Optional[Union[str, Collection[str]]] = 'NOUN', 'PROPN', 'ADJ’,
window_size: int = 2, edge_weighting: str = 'binary', position_bias:
bool = False, topn: Union[int, float] = 10) — List[Tuple[str, float]]
Extract key terms from a document using the TextRank algorithm, or a variation thereof. For example:

e TextRank: window_size=2, edge_weighting="binary", position_bias=False
¢ SingleRank: window_size=10, edge_weighting="count", position_bias=False

¢ PositionRank: window_size=10, edge_weighting="count", position_bias=True

Parameters
* doc —spaCy Doc from which to extract keyterms.

* normalize — If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc; if a callable, must accept a Token and return a str,
e.g. textacy.spacier.utils.get_normalized text ().

64

Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

include_pos — One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

window_size — Size of sliding window in which term co-occurrences are determined.

edge_weighting ({ "count", "binary"}) - : If “count”, the nodes for all co-
occurring terms are connected by edges with weight equal to the number of times they
co-occurred within a sliding window; if “binary”, all such edges have weight = 1.

position_bias - If True, bias the PageRank algorithm for weighting nodes in the word
graph, such that words appearing earlier and more frequently in doc tend to get larger
weights.

topn — Number of top-ranked terms to return as key terms. If an integer, represents the
absolute number; if a float, value must be in the interval (0.0, 1.0], which is converted to an
intby int (round (len (set (candidates)) * topn)).

Returns Sorted list of top topn key terms and their corresponding TextRank ranking scores.

References

* Mihalcea, R., & Tarau, P. (2004, July). TextRank: Bringing order into texts. Association for Computational
Linguistics.

* Wan, Xiaojun and Jianguo Xiao. 2008. Single document keyphrase extraction using neighborhood knowl-
edge. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages 855-860.

* Florescu, C. and Cornelia, C. (2017). PositionRank: An Unsupervised Approach to Keyphrase Extraction
from Scholarly Documents. In proceedings of ACL*, pages 1105-1115.

textacy.ke.yake.yake (doc: spacy.tokens.doc.Doc, *, normalize: Optional[str] = 'lemma’, ngrams:

Union[int, Collection[int]] = 1, 2, 3, include_pos: Optional[Union[str, Collec-
tion[str]]] = 'NOUN', 'PROPN’, 'ADJ', window_size: int = 2, topn: Union[int,
float] = 10) — List[Tuple[str, float]]

Extract key terms from a document using the YAKE algorithm.

Parameters

doc - spaCy Doc from which to extract keyterms. Must be sentence-segmented; optionally
POS-tagged.

normalize — If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc.

Note: Unlike the other keyterm extraction functions, this one doesn’t accept a callable for
normalize.

ngrams — n of which n-grams to consider as keyterm candidates. For example, (1, 2, 3)°
includes all unigrams, bigrams, and trigrams, while 2 includes bigrams only.

include_pos — One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

window_size — Number of words to the right and left of a given word to use as context
when computing the “relatedness to context” component of its score. Note that the resulting
sliding window’s full widthis 1 + (2 % window_size).

4.3. API Reference

65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

* topn — Number of top-ranked terms to return as key terms. If an integer, represents the
absolute number; if a float, value must be in the interval (0.0, 1.0], which is converted to an
intby int (round (len (candidates) =« topn))

Returns Sorted list of top t opn key terms and their corresponding YAKE scores.

References

Campos, Mangaravite, Pasquali, Jorge, Nunes, and Jatowt. (2018). A Text Feature Based Automatic Keyword
Extraction Method for Single Documents. Advances in Information Retrieval. ECIR 2018. Lecture Notes in
Computer Science, vol 10772, pp. 684-691.

textacy.ke.scake.scake (doc: spacy.tokens.doc.Doc, *, normalize: Optional[Union|[str,
Callable[[spacy.tokens.token.Token], str]]] = 'lemma', include_pos:
Optional[Union[str, Collection[str]]] = 'NOUN', 'PROPN', 'ADJ', topn:
Union[int, float] = 10) — List[Tuple[str, float]]
Extract key terms from a document using the SCAKE algorithm.

Parameters

* doc - spaCy Doc from which to extract keyterms. Must be sentence-segmented; optionally
POS-tagged.

e normalize — If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc; if a callable, must accept a Token and return a str,
e.g. textacy.spacier.utils.get_normalized text ().

* include_pos — One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

* topn — Number of top-ranked terms to return as key terms. If an integer, represents the
absolute number; if a float, value must be in the interval (0.0, 1.0], which is converted to an
intby int (round (len (candidates) * topn))

Returns Sorted list of top t opn key terms and their corresponding scores.

References
Duari, Swagata & Bhatnagar, Vasudha. (2018). sCAKE: Semantic Connectivity Aware Keyword Extraction.
Information Sciences. 477. https://arxiv.org/abs/1811.10831v1

class textacy.ke.sgrank.Candidate (fext, idx, length, count)

count

Alias for field number 3
idx

Alias for field number 1

length
Alias for field number 2

text
Alias for field number 0

66 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1811.10831v1

textacy Documentation, Release 0.10.1

3

textacy.ke.sgrank.sgrank (doc: spacy.tokens.doc.Doc, *, normalize: Optional[Union[str,

Callable[[spacy.tokens.span.Span], str]]] = 'lemma’, ngrams: Union[int,
Collection[int]] = 1, 2, 3, 4, 5, 6, include_pos: Optional[Union[str, Col-
lection[str]]] = 'NOUN', 'PROPN', 'ADJ', window_size: int = 1500, topn:
Union[int, float] = 10, idf: Dict[str, float] = None) — List[Tuple[str,

float]]
Extract key terms from a document using the SGRank algorithm.

Parameters
* doc - spaCy Doc from which to extract keyterms.

* normalize — If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc; if a callable, must accept a Span and return a str,
e.g. textacy.spacier.utils.get_normalized text ()

* ngrams — n of which n-grams to include. For example, (1, 2, 3, 4, 5, 6) (de-
fault) includes all ngrams from 1 to 6; 2 if only bigrams are wanted

* include_pos — One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

* window_size — Size of sliding window in which term co-occurrences are determined to
occur. Note: Larger values may dramatically increase runtime, owing to the larger number
of co-occurrence combinations that must be counted.

* topn — Number of top-ranked terms to return as keyterms. If int, represents the absolute
number; if float, must be in the open interval (0.0, 1.0), and is converted to an integer by
int (round(len (candidates) * topn))

* idf — Mapping of normalize (term) to inverse document frequency for re-weighting
of unigrams (n-grams with n > 1 have df assumed = 1). Results are typically better with idf
information.

Returns Sorted list of top topn key terms and their corresponding SGRank scores

Raises ValueError —if topn is a float but not in (0.0, 1.0] or window_size <2
References
Danesh, Sumner, and Martin. “SGRank: Combining Statistical and Graphical Methods to Improve the State of

the Art in Unsupervised Keyphrase Extraction.” Lexical and Computational Semantics (* SEM 2015) (2015):
117.

Keyterm Extraction Utils

textacy.ke.utils.normalize_terms (ferms: Union[Iterable[spacy.tokens.span.Span], It-

erable[spacy.tokens.token.Token]], normalize: Op-
tional[Union[str, Callable[[Union[spacy.tokens.span.Span,

spacy.tokens.token.Token]], str]]]) — Iterable[str]
Transform a sequence of terms from spaCy Token or Span s into strings, normalized by normalize.

Parameters

* terms —

4.3.

API Reference 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

e normalize — If “lemma”, lemmatize terms; if “lower”’, lowercase terms; if None, use the
form of terms as they appear in terms; if a callable, must accept a Token or Span and
return a str, e.g. textacy.spacier.utils.get_normalized text ().

Yields str

textacy.ke.utils.aggregate_term_variants (terms: Set[str], * acro_defs: Optional[Dict{str,
str]] = None, fuzzy_dedupe: bool = True) —

List[Set[str]]
Take a set of unique terms and aggregate terms that are symbolic, lexical, and ordering variants of each other, as

well as acronyms and fuzzy string matches.
Parameters
* terms — Set of unique terms with potential duplicates

* acro_defs —If not None, terms that are acronyms will be aggregated with their definitions
and terms that are definitions will be aggregated with their acronyms

* fuzzy_ dedupe - If True, fuzzy string matching will be used to aggregate similar terms
of a sufficient length

Returns Each item is a set of aggregated terms.

Notes

Partly inspired by aggregation of variants discussed in Park, Youngja, Roy J. Byrd, and Branimir K. Bogu-
raev. “Automatic glossary extraction: beyond terminology identification.” Proceedings of the 19th international
conference on Computational linguistics-Volume 1. Association for Computational Linguistics, 2002.

textacy.ke.utils.get_longest_subsequence_candidates (doc: spacy.tokens.doc.Doc,
match_func:
Callable[[spacy.tokens.token.Token],
bool]) — Iter-
able[Tuple[spacy.tokens.token.Token,
11

Get candidate keyterms from doc, where candidates are longest consecutive subsequences of tokens for which
all match_func (token) is True.

Parameters
* doc -

* match_func - Function applied sequentially to each Token in doc that returns True for
matching (“good”) tokens, False otherwise.

Yields Next longest consecutive subsequence candidate, as a tuple of constituent tokens.

textacy.ke.utils.get_ngram_candidates (doc: spacy.tokens.doc.Doc, ns: Union[int, Collec-
tion[int]], *, include_pos: Optional[Union[str, Col-
lection[str]]] = 'NOUN', 'PROPN', 'ADJ') — lter-
able[Tuple[spacy.tokens.token.Token, ...]]
Get candidate keyterms from doc, where candidates are n-length sequences of tokens (for all n in ns) that don’t

start/end with a stop word or contain punctuation tokens, and whose constituent tokens are filtered by POS tag.
Parameters
* doc -

* ns — One or more n values for which to generate n-grams. For example, 2 gets bigrams;
(2, 3) gets bigrams and trigrams.

68 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* include_pos — One or more POS tags with which to filter ngrams. If None, include
tokens of all POS tags.

Yields Next ngram candidate, as a tuple of constituent Tokens.
See also:
textacy.extract.ngrams ()

textacy.ke.utils.get_pattern_matching candidates (doc: spacy.tokens.doc.Doc,
patterns: Union/[str, List[str],
List[dict], List[List[dict]]]) — Iter-
able[Tuple[spacy.tokens.token.Token,

Get candidate keyterms from doc, where candidates are sequences of tokens that match any pattern in
patterns

Parameters
e doc -

* patterns — One or multiple patterns to match against doc using a spacy.matcher.
Matcher.

Yields Tuple[spacy.tokens.Token] — Next pattern-matching candidate, as a tuple of con-
stituent Tokens.

See also:
textacy.extract.matches ()

textacy.ke.utils.get_filtered topn_terms (term_scores: Iterable[Tuple[str, float]], topn: int,
* match_threshold: Optional[float] = None) —
List[Tuple[str, float]]
Build up a list of the topn terms, filtering out any that are substrings of better-scoring terms and optionally
filtering out any that are sufficiently similar to better-scoring terms.

Parameters

* term_scores - lterable of (term, score) pairs, sorted in order of score from best to worst.
Note that this may be from high to low value or low to high, depending on the scoring
algorithm.

* topn — Maximum number of top-scoring terms to get.

* match_threshold — Minimal edit distance between a term and previously seen terms,
used to filter out terms that are sufficiently similar to higher-scoring terms. Uses textacy.
similarity.token sort_ratio().

textacy.ke.utils.most_discriminating terms (terms_lists: Iterable[Iterable[str]],
bool_array_grpl: Iterable[bool], *
max_n_terms: int = 1000, top_n_terms:
Union[int, float] = 25) — Tuple[List[str],
List[str]]

Given a collection of documents assigned to 1 of 2 exclusive groups, get the top_n_terms most discriminat-
ing terms for groupl-and-not-group2 and group2-and-not-groupl.

Parameters

* terms_1lists — Sequence of documents, each as a sequence of (str) terms; used as input
to doc_term matrix()

* bool_array_grpl — Ordered sequence of True/False values, where True corresponds to
documents falling into “group 1" and False corresponds to those in “group 2”.

4.3. API Reference 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* max_n_terms — Only consider terms whose document frequency is within the top
max_n_terms out of all distinct terms; must be > 0.

* top_n_terms — If int (must be > 0), the total number of most discriminating terms to
return for each group; if float (must be in the interval (0, 1)), the fraction of max_n_terms
to return for each group.

Returns List of the top top_n_terms most discriminating terms for grp1-not-grp2, and list of the
top top_n_terms most discriminating terms for grp2-not-grp1.

References
King, Gary, Patrick Lam, and Margaret Roberts. “Computer-Assisted Keyword and Document Set Discovery

from Unstructured Text.” (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.1445&rep=
repl&type=pdf

4.3.7 Vectorization and Topic Modeling

vsm.vectorizers.Vectorizer Transform one or more tokenized documents into a
sparse document-term matrix of shape (# docs, # unique
terms), with flexibly weighted and normalized values.

vsm.vectorizers.GroupVectorizer Transform one or more tokenized documents into a
group-term matrix of shape (# groups, # unique terms),
with tf-, tf-idf, or binary-weighted values.

tm.topic_model.TopicModel Train and apply a topic model to vectorized texts using
scikit-learn’s implementations of LSA, LDA, and NMF
models.

vsm.matrix_utils.get_term freqgs Compute frequencies for all terms in a document-term
matrix, with optional sub-linear scaling.

vsm.matrix utils. Compute inverse document frequencies for all terms in

get_inverse_doc_fregs a document-term matrix, using one of several IDF for-
mulations.

vsm.matrix_utils.apply_idf _weighting Apply inverse document frequency (idf) weighting to
a term-frequency (tf) weighted document-term matrix,
using one of several IDF formulations.

vsm.matrix_utils.filter terms_by df Filter out terms that are too common and/or too rare
(by document frequency), and compactify the top
max_n_terms inthe id_to_term mapping accord-

ingly.

Vectorizers

textacy.vsm.vectorizers: Transform a collection of tokenized documents into a document-term matrix of
shape (# docs, # unique terms), with various ways to filter or limit included terms and flexible weighting schemes for
their values.

A second option aggregates terms in tokenized documents by provided group labels, resulting in a “group-term-matrix”
of shape (# unique groups, # unique terms), with filtering and weighting functionality as described above.

See the Vectorizer and GroupVectorizer docstrings for usage examples and explanations of the various
weighting schemes.

70 Chapter 4. contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.1445&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.1445&rep=rep1&type=pdf

textacy Documentation, Release 0.10.1

class textacy.vsm.vectorizers.Vectorizer (%, tf_type="linear’, apply_idf=False,
idf_type='smooth’, apply_dl=False,
dl_type='sqrt’, norm=~None, min_df=1,
max_df=1.0, max_n_terms=None, vocabu-

lary_terms=None)
Transform one or more tokenized documents into a sparse document-term matrix of shape (# docs, # unique

terms), with flexibly weighted and normalized values.

Stream a corpus with metadata from disk:

>>> ds = textacy.datasets.CapitolWords ()

>>> records = ds.records (1limit=1000)

>>> corpus = textacy.Corpus ("en", data=records)
>>> corpus

Corpus (1000 docs; 538172 tokens)

Tokenize and vectorize the first 600 documents of this corpus:

>>> tokenized_docs = (
doc._.to_terms_list (ngrams=1, entities=True, as_strings=True)
for doc in corpus[:600])
>>> vectorizer = Vectorizer(
apply_idf=True, norm="12",
.. min_df=3, max_df=0.95)
>>> doc_term _matrix = vectorizer.fit_transform(tokenized_docs)
>>> doc_term_matrix
<600x4346 sparse matrix of type '<class 'numpy.float6d'>"'
with 69673 stored elements in Compressed Sparse Row format>

Tokenize and vectorize the remaining 400 documents of the corpus, using only the groups, terms, and weights
learned in the previous step:

>>> tokenized_docs = (
doc._.to_terms_list (ngrams=1, entities=True, as_strings=True)
for doc in corpus[600:])

>>> doc_term_matrix = vectorizer.transform(tokenized_docs)

>>> doc_term_matrix

<400x4346 sparse matrix of type '<class 'numpy.float64'>"
with 38756 stored elements in Compressed Sparse Row format>

Inspect the terms associated with columns; they’re sorted alphabetically:

>>> vectorizer.terms_list[:5]
vy, '$', '$ 1 million', '$ 1.2 billion', '$ 10 billion']

(Btw: That empty string shouldn’t be there. Somehow, spaCy is labeling it as a named entity. . .)

If known in advance, limit the terms included in vectorized outputs to a particular set of values:

>>> tokenized_docs = (
doc._.to_terms_list (ngrams=1, entities=True, as_strings=True)
for doc in corpus[:600])
>>> vectorizer = Vectorizer (
apply_idf=True, idf_type="smooth", norm="12",
min_df=3, max_df=0.95,
vocabulary_terms=["president", "bill", "unanimous", "distinguished",
—"american"])
>>> doc_term_matrix = vectorizer.fit_transform(tokenized_docs)

(continues on next page)

4.3. API Reference 71

textacy Documentation, Release 0.10.1

(continued from previous page)

>>> doc_term_matrix
<600x5 sparse matrix of type '<class 'numpy.float64'>"
with 844 stored elements in Compressed Sparse Row format>
>>> vectorizer.terms_list
["american', 'bill', 'distinguished', 'president', 'unanimous']

Specify different weighting schemes to determine values in the matrix, adding or customizing individual com-
ponents, as desired:

>>> money_idx = vectorizer.vocabulary_terms["S$"]

>>> doc_term_matrix = Vectorizer (
tf_type="linear", norm=None, min_df=3, max_df=0.95
) .fit_transform(tokenized_docs)

>>> print (doc_term matrix[0:7, money_idx].toarray())

]

>>> doc_term_matrix = Vectorizer (

. tf_type="sqgrt", apply_dl=True, dl_type="sgrt", norm=None, min_df=3, max_

—df=0.95
) .fit_transform(tokenized_docs)

>>> print (doc_term matrix[0:7, money_idx].toarray())

[[O0.]

]
.10101525]
.26037782]
]
]
.1139605817]
>>> doc_term_matrix = Vectorizer (
. tf_type="bm25", apply_idf=True, idf_type="smooth", norm=None, min_df=3,
—max_df=0.95
) .fit_transform(tokenized_docs)
>>> print (doc_term matrix[0:7, money_idx].toarray())
[[O.]

(0.
[3.28353965
[5.82763722
(0.
[0
[4

.839339241]]

If you’re not sure what’s going on mathematically, Vectorizer.weight ing gives the formula being used
to calculate weights, based on the parameters set when initializing the vectorizer:

>>> vectorizer.weighting
"(tf x« (k + 1)) / (k + tf) % log((n_docs + 1) / (df + 1)) + 1"

In general, weights may consist of a local component (term frequency), a global component (inverse document
frequency), and a normalization component (document length). Individual components may be modified: they
may have different scaling (e.g. tf vs. sqrt(tf)) or different behaviors (e.g. “standard” idf vs bm25’s version).
There are many possible weightings, and some may be better for particular use cases than others. When in
doubt, though, just go with something standard.

72

Chapter 4. contents

textacy Documentation, Release 0.10.1

o “tf”: Weights are simply the absolute per-document term frequencies (tfs), i.e. value (i, j) in an output
doc-term matrix corresponds to the number of occurrences of term j in doc i. Terms appearing many
times in a given doc receive higher weights than less common terms. Params: tf_type="1linear",
apply_idf=False, apply_dl=False

* “tfidf”: Doc-specific, local tfs are multiplied by their corpus-wide, global inverse document frequen-
cies (idfs). Terms appearing in many docs have higher document frequencies (dfs), correspondingly
smaller idfs, and in turn, lower weights. Params: tf_type="linear", apply_idf=True,
idf_type="smooth", apply_dl=False

* “bm25”: This scheme includes a local tf component that increases asymptotically, so higher tfs have
diminishing effects on the overall weight; a global idf component that can go negative for terms that
appear in a sufficiently high proportion of docs; as well as a row-wise normalization that accounts for
document length, such that terms in shorter docs hit the tf asymptote sooner than those in longer docs.
Params: tf_type="bm25", apply_idf=True, idf_type="bm25", apply_dl=True

* “binary”: This weighting scheme simply replaces all non-zero tfs with 1, indicating the presence or ab-
sence of a term in a particular doc. That’s it. Params: tf_type="binary", apply_idf=False,
apply_dl=False

Slightly altered versions of these “standard” weighting schemes are common, and may have better behavior in
general use cases:

* “lucene-style tfidf”: Adds a doc-length normalization to the usual local and global components. Params:
tf_type="linear", apply_idf=True, idf_type="smooth", apply_dl=True,
dl_type="sqgrt"

* “lucene-style bm25”: Uses a smoothed idf instead of the classic bm25 variant to prevent weights on terms
from going negative. Params: tf_type="bm25", apply_idf=True, idf_type="smooth",
apply_dl=True, dl_type="linear"

Parameters

* tf type({"linear", "sqrt", "log", "binary"})- Type of term frequency
(tf) to use for weights’ local component:

— "linear”: tf (tfs are already linear, so left as-is)

“sqrt”: tf => sqrt(tf)

“log”: tf => log(tf) + 1
— ”binary”: tf => 1
* apply_idf (bool) — If True, apply global idfs to local term weights, i.e. divide per-

doc term frequencies by the (log of the) total number of documents in which they appear;
otherwise, don’t.

e idf_type ({ "standard", "smooth", "bm25"})-Type of inverse document fre-
quency (idf) to use for weights’ global component:

— 7standard”: idf = log(n_docs / df) + 1.0

— ”smooth”: idf =log(n_docs + 1 /df + 1) + 1.0, i.e. 1 is added to all document frequencies,
as if a single document containing every unique term was added to the corpus. This
prevents zero divisions!

— ”bm25”: idf = log((n_docs - df + 0.5) / (df + 0.5)), which is a form commonly used in
information retrieval that allows for very common terms to receive negative weights.

* apply_d1l (boo1l) — If True, normalize local(+global) weights by doc length, i.e. divide
by the total number of in-vocabulary terms appearing in a given doc; otherwise, don’t.

4.3. API Reference 73

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.10.1

* dl_type({"linear", "sqgrt", "log"})-Type ofdocument-length scaling to use
for weights’ normalization component:

— ”linear”: dl (dls are already linear, so left as-is)
— 7sqrt”: dl => sqrt(dl)
- "log”: dl => log(dl)

e norm({"11", "12"} or None)-If “11” or “12”, normalize weights by the L1 or L2
norms, respectively, of row-wise vectors; otherwise, don’t.

* vocabulary_ terms (Dict[str, int] or Iterable[str]) — Mapping of
unique term string to unique term id, or an iterable of term strings that gets converted into a
suitable mapping. Note that, if specified, vectorized outputs will include only these terms as
columns.

e min_df (float or int)-Iffloat, value is the fractional proportion of the total number
of documents, which must be in [0.0, 1.0]. If int, value is the absolute number. Filter terms
whose document frequency is less than min_df.

* max_df (float or int)-Iffloat, value is the fractional proportion of the total number
of documents, which must be in [0.0, 1.0]. If int, value is the absolute number. Filter terms
whose document frequency is greater than max_df.

* max_n_terms (int)— Only include terms whose document frequency is within the top
max_n_terms.

vocabulary terms
Mapping of unique term string to unique term id, either provided on instantiation or generated by calling
Vectorizer. fit () on a collection of tokenized documents.

Type Dict[str, int]

property id to_term
Mapping of unique term id (int) to unique term string (str), i.e. the inverse of Vectorizer.
vocabulary. This attribute is only generated if needed, and it is automatically kept in sync with the
corresponding vocabulary.

property terms_list
List of term strings in column order of vectorized outputs. For example, terms_1ist [0] gives the term
assigned to the first column in an output doc-term-matrix, doc_term matrix[:, 0].

£it (tokenized _docs)
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms.
Fit and store global weights (IDFs) and, if needed for term weighting, the average document length.

Parameters tokenized docs (Iterable[Iterable[str]]) — A sequence of tok-
enized documents, where each is a sequence of (str) terms. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
for spacy_doc in spacy_docs)

>>> ((ne.text for ne in extract.entities (doc))
for doc in corpus)
>>> (doc._.to_terms_list (as_strings=True)

for doc in docs)

Returns The instance that has just been fit.

Return type Vectorizer

74 Chapter 4. contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

fit_transform (tokenized _docs)
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms.
Fit and store global weights (IDFs) and, if needed for term weighting, the average document length. Trans-
form tokenized_docs into a document-term matrix with values weighted according to the parameters
in Vectorizer initialization.

Parameters tokenized_docs (Iterable[Iterable[str]]) — A sequence of tok-
enized documents, where each is a sequence of (str) terms. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities (doc))
.. for doc in corpus)
>>> (doc._.to_terms_list (as_strings=True)
for doc in docs)

Returns The transformed document-term matrix. Rows correspond to documents and columns
correspond to terms.

Return type scipy.sparse.csr_matrix

transform (tokenized_docs)
Transform tokenized_docs into a document-term matrix with values weighted according to the pa-
rameters in Vectorizer initialization and the global weights computed by calling Vectorizer.
fit ().

Parameters tokenized_docs (Iterable[Iterable[str]]) — A sequence of tok-
enized documents, where each is a sequence of (str) terms. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
.. for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities (doc))
... for doc in corpus)
>>> (doc._.to_terms_list (as_strings=True)
for doc in docs)

Returns The transformed document-term matrix. Rows correspond to documents and columns
correspond to terms.

Return type scipy.sparse.csr_matrix

Note: For best results, the tokenization used to produce tokenized_docs should be the same as was
applied to the docs used in fitting this vectorizer or in generating a fixed input vocabulary.

Consider an extreme case where the docs used in fitting consist of lowercased (non-numeric) terms, while
the docs to be transformed are all uppercased: The output doc-term-matrix will be empty.

property weighting
A mathematical representation of the overall weighting scheme used to determine values in the vectorized
matrix, depending on the params used to initialize the Vectorizer.

Type str
class textacy.vsm.vectorizers.GroupVectorizer (¥, tf type='linear’, apply_idf=False,
idf _type='smooth’, apply_dl=False,
di_type='linear', norm=None, min_df=1,
max_df=1.0, max_n_terms=None,
vocabulary_terms=None, vocabu-

lary_grps=None)

4.3. API Reference 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Transform one or more tokenized documents into a group-term matrix of shape (# groups, # unique terms), with
tf-, tf-idf, or binary-weighted values.

This is an extension of typical document-term matrix vectorization, where terms are grouped by the documents
in which they co-occur. It allows for customized grouping, such as by a shared author or publication year, that
may span multiple documents, without forcing users to merge those documents themselves.

Stream a corpus with metadata from disk:

>>> ds = textacy.datasets.CapitolWords ()

>>> records = ds.records (1limit=1000)

>>> corpus = textacy.Corpus ("en", data=records)
>>> corpus

Corpus (1000 docs; 538172 tokens)

Tokenize and vectorize the first 600 documents of this corpus, where terms are grouped not by documents but
by a categorical value in the docs’ metadata:

>>> tokenized_docs, groups = textacy.io.unzip(
(doc._.to_terms_list (ngrams=1, entities=True, as_strings=True),

doc._.meta["speaker_name"])
for doc in corpus[:600])
>>> vectorizer = GroupVectorizer (

apply_idf=True, idf_type="smooth", norm="12",

min_df=3, max_df=0.95)
>>> grp_term _matrix = vectorizer.fit_transform(tokenized_docs, groups)
>>> grp_term _matrix
<5x1793 sparse matrix of type '<class 'numpy.float64'>"

with 6075 stored elements in Compressed Sparse Row format>

Tokenize and vectorize the remaining 400 documents of the corpus, using only the groups, terms, and weights
learned in the previous step:

>>> tokenized_docs, groups = textacy.io.unzip(
(doc._.to_terms_list (ngrams=1, entities=True, as_strings=True),
doc._.meta["speaker _name"])
for doc in corpus[600:])

>>> grp_term_matrix = vectorizer.transform(tokenized_docs, groups)

>>> grp_term matrix
<5x1793 sparse matrix of type '<class 'numpy.float6d'>"'
with 4440 stored elements in Compressed Sparse Row format>

Inspect the terms associated with columns and groups associated with rows; they’re sorted alphabetically:

>>> vectorizer.terms_list[:5]

['"$ 1 million', '$ 160 million', '$ 7 billion', '0', 'l minute']

>>> vectorizer.grps_list

['Bernie Sanders', 'John Kasich', 'Joseph Biden', 'Lindsey Graham', 'Rick Santorum

"]

If known in advance, limit the terms and/or groups included in vectorized outputs to a particular set of values:

>>> tokenized_docs, groups = textacy.io.unzip(
(doc._.to_terms_list (ngrams=1, entities=True, as_strings=True),
doc._.meta["speaker_name"])
for doc in corpus[:600])
>>> vectorizer = GroupVectorizer (
apply_idf=True, idf_type="smooth", norm="12",

(continues on next page)

76

Chapter 4. contents

textacy Documentation, Release 0.10.1

(continued from previous page)

min_df=3, max_df=0.95,

c vocabulary_terms=["legislation", "federal government", "house",
—~"constitutional"],

vocabulary_grps=["Bernie Sanders", "Lindsey Graham", "Rick Santorum"])
>>> grp_term _matrix = vectorizer.fit_transform(tokenized_docs, groups)

>>> grp_term _matrix
<3x4 sparse matrix of type '<class 'numpy.float6d'>"

with 12 stored elements in Compressed Sparse Row format>
>>> vectorizer.terms_list
["constitutional', 'federal government', 'house', 'legislation']
>>> vectorizer.grps_list
['Bernie Sanders', 'Lindsey Graham', 'Rick Santorum']

For a discussion of the various weighting schemes that can be applied, check out the Vectorizer docstring.
Parameters

* tf type ({"linear", "sqrt", "log", "binary"})- Type of term frequency
(tf) to use for weights’ local component:

— ”linear”: tf (tfs are already linear, so left as-is)

”sqrt”: tf => sqrt(tf)

”log”: tf => log(tf) + 1

“binary”: tf => 1

* apply_idf (bool)—If True, apply global idfs to local term weights, i.e. divide per-doc
term frequencies by the total number of documents in which they appear (well, the log of
that number); otherwise, don’t.

* idf_type ({ "standard", "smooth", "bm25"})-Type of inverse document fre-
quency (idf) to use for weights’ global component:

— 7standard”: idf = log(n_docs / df) + 1.0

— ”smooth”: idf =log(n_docs + 1 /df + 1) + 1.0, i.e. 1 is added to all document frequencies,
as if a single document containing every unique term was added to the corpus.

— ”bm25”: idf = log((n_docs - df + 0.5) / (df + 0.5)), which is a form commonly used in
information retrieval that allows for very common terms to receive negative weights.

* apply_dl (bool) - If True, normalize local(+global) weights by doc length, i.e. divide
by the total number of in-vocabulary terms appearing in a given doc; otherwise, don’t.

e dl_type({"linear", "sqrt", "log"})-Typeof document-length scaling to use
for weights’ normalization component:

— ”linear”: dl (dls are already linear, so left as-is)
— 7sqrt”: dl => sqrt(dl)
— "log”: dl => log(dl)

e norm({"11", "12"} or None)-If “l1” or “12”, normalize weights by the L1 or L2
norms, respectively, of row-wise vectors; otherwise, don’t.

* vocabulary_terms (Dict[str, int] or Iterable[str]) — Mapping of
unique term string to unique term id, or an iterable of term strings that gets converted into a
suitable mapping. Note that, if specified, vectorized outputs will include only these terms as
columns.

4.3. API Reference 77

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* vocabulary_grps (Dict[str, int] or Iterable[str]) — Mapping of
unique group string to unique group id, or an iterable of group strings that gets converted
into a suitable mapping. Note that, if specified, vectorized outputs will include only these
groups as rows.

e min_df (float or int)-Iffloat, value is the fractional proportion of the total number
of documents, which must be in [0.0, 1.0]. If int, value is the absolute number. Filter terms
whose document frequency is less than min_df.

* max_df (float or int)-Iffloat, value is the fractional proportion of the total number
of documents, which must be in [0.0, 1.0]. If int, value is the absolute number. Filter terms
whose document frequency is greater than max_df.

* max_n_terms (int) — Only include terms whose document frequency is within the top
max_n_terms.

vocabulary_ terms
Mapping of unique term string to unique term id, either provided on instantiation or generated by calling
GroupVectorizer.fit () on a collection of tokenized documents.

Type Dict[str, int]

vocabulary grps
Mapping of unique group string to unique group id, either provided on instantiation or generated by calling
GroupVectorizer.fit () on a collection of tokenized documents.

Type Dict[str, int]

id to_term
Mapping of unique term id to unique term string, i.e. the inverse of GroupVectorizer.
vocabulary_terms. This mapping is only generated as needed.

Type Dict[int, str]

terms_list
List of term strings in column order of vectorized outputs.

Type List[str]
See also:
Vectorizer

property id_to_grp
Mapping of unique group id (int) to unique group string (str), i.e. the inverse of GroupVectorizer.
vocabulary_grps. This attribute is only generated if needed, and it is automatically kept in sync with
the corresponding vocabulary.

property grps_list
List of group strings in row order of vectorized outputs. For example, grps_1list [0] gives the group
assigned to the first row in an output group-term-matrix, grp_term _matrix [0, :].

fit (tokenized_docs, grps)
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms;
do the same for the groups in grps. Fit and store global weights (IDFs) and, if needed for term weighting,
the average document length.

Parameters

* tokenized_docs (Iterable[Iterable[str]])— A sequence of tokenized doc-
uments, where each is a sequence of (str) terms. For example:

78 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

>>> ([tok.lemma_ for tok in spacy_doc]
for spacy_doc in spacy_docs)

>>> ((ne.text for ne in extract.entities (doc))
for doc in corpus)

>>> (doc._.to_terms_list (as_strings=True)
for doc in docs)

e grps (Iterable[str]) — Sequence of group names by which the terms in
tokenized_docs are aggregated, where the first item in grps corresponds to the first
item in tokenized_docs, and so on.

Returns The instance that has just been fit.
Return type GroupVectorizer

fit_transform (tokenized_docs, grps)
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms;
do the same for the groups in grps. Fit and store global weights (IDFs) and, if needed for term weight-
ing, the average document length. Transform tokenized_docs into a group-term matrix with values
weighted according to the parameters in GroupVectorizer initialization.

Parameters

* tokenized docs (Iterable[Iterable[str]])— A sequence of tokenized doc-
uments, where each is a sequence of (str) terms. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
for spacy_doc in spacy_docs)

>>> ((ne.text for ne in extract.entities (doc))
for doc in corpus)

>>> (doc._.to_terms_list (as_strings=True)
for doc in docs)

* grps (Iterable[str]) — Sequence of group names by which the terms in
tokenized_docs are aggregated, where the first item in grps corresponds to the first
item in tokenized_docs, and so on.

Returns The transformed group-term matrix. Rows correspond to groups and columns corre-
spond to terms.

Return type scipy.sparse.csr_matrix

transform (fokenized_docs, grps)
Transform tokenized_docs and grps into a group-term matrix with values weighted according
to the parameters in GroupVectorizer initialization and the global weights computed by calling
GroupVectorizer.fit ().

Parameters

* tokenized_docs (Iterable[Iterable[str]])— A sequence of tokenized doc-
uments, where each is a sequence of (str) terms. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
for spacy_doc in spacy_docs)

>>> ((ne.text for ne in extract.entities (doc))
for doc in corpus)

>>> (doc._.to_terms_list (as_strings=True)
for doc in docs)

4.3.

API Reference 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

e grps (Iterable[str]) — Sequence of group names by which the terms in
tokenized_docs are aggregated, where the first item in grps corresponds to the first
item in tokenized_docs, and so on.

Returns The transformed group-term matrix. Rows correspond to groups and columns corre-
spond to terms.

Return type scipy.sparse.csr_matrix

Note: For best results, the tokenization used to produce tokenized_docs should be the same as was
applied to the docs used in fitting this vectorizer or in generating a fixed input vocabulary.

Consider an extreme case where the docs used in fitting consist of lowercased (non-numeric) terms, while
the docs to be transformed are all uppercased: The output group-term-matrix will be empty.

Sparse Matrix Utils

textacy.vsm.matrix_utils: Functions for computing corpus-wide term- or document-based values, like term
frequency, document frequency, and document length, and filtering terms from a matrix by their document frequency.

textacy.vsm.matrix_utils.get_term freqs (doc_term_matrix, *, type_='linear")
Compute frequencies for all terms in a document-term matrix, with optional sub-linear scaling.

Parameters

* doc_term matrix (scipy.sparse.csr_matrix)— M x N sparse matrix, where
M is the # of docs and N is the # of unique terms. Values must be the linear, un-scaled
counts of term n per doc m.

* type ({'linear', 'sqgrt', 'log'})- Scaling applied to absolute term counts. If
‘linear’, term counts are left as-is, since the sums are already linear; if ‘sqrt’, tf => sqrt(tf);
if ‘log’, tf =>log(tf) + 1.

Returns Array of term frequencies, with length equal to the # of unique terms (# of columns) in
doc_term matrix.

Return type numpy .ndarray

Raises ValueError — if doc_term_matrix doesn’t have any non-zero entries, or if type_

CEINNT3

isn’t one of {“linear”, “sqrt”, “log”}.

textacy.vsm.matrix_utils.get_doc_£freqs (doc_term_matrix)
Compute document frequencies for all terms in a document-term matrix.

Parameters doc_term_matrix (scipy.sparse.csr_matrix) — M x N sparse matrix,
where M is the # of docs and N is the # of unique terms.

Note: Weighting on the terms doesn’t matter! Could be binary or tf or tfidf, a term’s doc freq
will be the same.

Returns Array of document frequencies, with length equal to the # of unique terms (# of columns)
indoc_term matrix.

Return type numpy .ndarray

Raises ValueError —if doc_term_matrix doesn’t have any non-zero entries.

80 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

textacy.vsm.matrix_utils.get_inverse_doc_fredqs (doc_term_matrix, *, type_='smooth’)
Compute inverse document frequencies for all terms in a document-term matrix, using one of several IDF
formulations.

Parameters

* doc_term matrix (scipy.sparse.csr_matrix)— M x N sparse matrix, where
M is the # of docs and N is the # of unique terms. The particular weighting of matrix values
doesn’t matter.

* type ({ 'standard', 'smooth', 'bm25'})- Type of IDF formulation to use. If
‘standard’, idfs => log(n_docs / dfs) + 1.0; if ‘smooth’, idfs => log(n_docs + 1 / dfs + 1) +
1.0, i.e. 1 is added to all document frequencies, equivalent to adding a single document to
the corpus containing every unique term; if ‘bm25’, idfs => log((n_docs - dfs + 0.5) / (dfs +
0.5)), which is a form commonly used in BM25 ranking that allows for extremely common
terms to have negative idf weights.

Returns Array of inverse document frequencies, with length equal to the # of unique terms (# of
columns) in doc_term_matrix.

Return type numpy.ndarray
Raises ValueError —if type_ isn’t one of {“standard”, “smooth”, “bm25”}.

textacy.vsm.matrix_utils.get_doc_lengths (doc_term_matrix, *, type_='linear’)
Compute the lengths (i.e. number of terms) for all documents in a document-term matrix.

Parameters

* doc_term matrix (scipy.sparse.csr_matrix)— M x N sparse matrix, where
M is the # of docs, N is the # of unique terms, and values are the absolute counts of term n
per doc m.

* type ({'linear', 'sqgrt', 'log'})— Scaling applied to absolute doc lengths. If
‘linear’, lengths are left as-is, since the sums are already linear; if ‘sqrt’, dl => sqrt(dl); if
‘log’, dl =>log(dl) + 1.

Returns Array of document lengths, with length equal to the # of documents (# of rows) in
doc_term_matrix.

Return type numpy.ndarray

CLINNT3

Raises ValueError —if type_ isn’t one of {“linear”, “sqrt”, “log”}.

textacy.vsm.matrix_utils.get_information_content (doc_term_matrix)
Compute information content for all terms in a document-term matrix. IC is a float in [0.0, 1.0], defined as —df
x log2(df) — (1 - df) » log2(l - df), wheredfis aterm’s normalized document frequency.

Parameters doc_term _matrix (scipy.sparse.csr_matrix) — M x N sparse matrix,
where M is the # of docs and N is the # of unique terms.

Note: Weighting on the terms doesn’t matter! Could be binary or tf or tfidf, a term’s information
content will be the same.

Returns Array of term information content values, with length equal to the # of unique terms (# of
columns) in doc_term_matrix.

Return type numpy.ndarray

Raises ValueError —if doc_term_matrix doesn’t have any non-zero entries.

4.3. API Reference 81

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

textacy.vsm.matrix_utils.apply_ idf_weighting (doc_term_matrix, *, type_='smooth")
Apply inverse document frequency (idf) weighting to a term-frequency (tf) weighted document-term matrix,
using one of several IDF formulations.

Parameters

* doc_term matrix (scipy.sparse.csr_matrix)— M x N sparse matrix, where
M is the # of docs and N is the # of unique terms.

* type ({ 'standard’', 'smooth', 'bm25'})-Type of IDF formulation to use.
Returns Sparse matrix of shape M x N, where value (i, j) is the tfidf weight of term j in doc i.
Return type scipy.sparse.csr_matrix
See also:
get_inverse_doc_fregs()

textacy.vsm.matrix_utils.filter terms_by_ df (doc_term_matrix, term_to_id,
* max_df=1.0, min_df=1,

max_n_terms=None)
Filter out terms that are too common and/or too rare (by document frequency), and compactify the

top max_n_terms in the id_to_term mapping accordingly. Borrows heavily from the sklearn.
feature_extraction.text module.

Parameters

* doc_term matrix(scipy.sparse.csr_matrix)—M X N matrix, where M is the
of docs and N is the # of unique terms.

* term to_id (Dict[str, int])— Mapping of term string to unique term id, e.g.
Vectorizer.vocabulary_terms.

* min_df (float or int)-iffloat, value is the fractional proportion of the total number
of documents and must be in [0.0, 1.0]; if int, value is the absolute number; filter terms
whose document frequency is less than min_df

* max_df (float or int)-iffloat, value is the fractional proportion of the total number
of documents and must be in [0.0, 1.0]; if int, value is the absolute number; filter terms
whose document frequency is greater than max_df

* max n_terms (int) — only include terms whose term frequency is within the top
max_n_terms

Returns
Sparse matrix of shape (# docs, # unique filtered terms), where value (i, j) is the weight of term
jindoci.
Dict[str, int]: Term to id mapping, where keys are unique filtered terms as strings and values are
their corresponding integer ids.

Return type scipy.sparse.csr_matrix

Raises ValueError —ifmax_df ormin_df ormax_n_terms <0.

textacy.vsm.matrix_utils.filter_ terms_by_ic (doc_term_matrix, term_to_id, *, min_ic=0.0,

] max_n_terms=None))
Filter out terms that are too common and/or too rare (by information content), and compactify the

top max_n_terms in the id_to_term mapping accordingly. Borrows heavily from the sklearn.
feature_ extraction.text module.

Parameters

82 Chapter 4. contents

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

* doc_term matrix (scipy.sparse.csr_matrix)—M X N sparse matrix, where
M is the # of docs and N is the # of unique terms.

* term_to_id (Dict[str, int]) — Mapping of term string to unique term id, e.g.
Vectorizer.vocabulary_ terms.

e min_ic (float) - filter terms whose information content is less than this value; must be
in [0.0, 1.0]

* max_n_terms (int) — only include terms whose information content is within the top
max_n_terms

Returns
Sparse matrix of shape (# docs, # unique filtered terms), where value (i, j) is the weight of term
jindoci.
Dict[str, int]: Term to id mapping, where keys are unique filtered terms as strings and values are
their corresponding integer ids.

Return type scipy.sparse.csr_matrix

Raises ValueError —if min_ic notin [0.0, 1.0] ormax_n_terms <0.

Topic Models

textacy.tm.topic_model: Convenient and consolidated topic-modeling, built on scikit-learn.

class textacy.tm.topic_model.TopicModel (model, n_topics=10, **kwargs)
Train and apply a topic model to vectorized texts using scikit-learn’s implementations of LSA, LDA, and NMF
models. Also any other topic model implementations that have component_, n_topics and transform attributes.
Inspect and visualize results. Save and load trained models to and from disk.

Prepare a vectorized corpus (i.e. document-term matrix) and corresponding vocabulary (i.e. mapping of term
strings to column indices in the matrix). See textacy.vsm.Vectorizer for details. In short:

>>> vectorizer = Vectorizer(

tf_type="linear", apply_idf=True, idf_type="smooth", norm="12",
.. min_df=3, max_df=0.95, max_n_terms=100000)
>>> doc_term matrix = vectorizer.fit_transform(terms_list)

Initialize and train a topic model:

>>> model = textacy.tm.TopicModel ("nmf", n_topics=20)
>>> model.fit (doc_term _matrix)

>>> model

TopicModel (n_topics=10, model=NMF)

Transform the corpus and interpret our model:

>>> doc_topic_matrix = model.transform(doc_term matrix)
>>> for topic_idx, top_terms in model.top_topic_terms (vectorizer.id_to_term,
—topics=[0,11):

print ("topic", topic_idx, ":", " ".join (top_terms))
topic 0 : people american go year work think $ today money
—america
topic 1 : rescind quorum order unanimous consent ask president mr.
— madam absence

>>> for topic_idx, top_docs in model.top_topic_docs (doc_topic_matrix, topics=[0,
—1], top_n=2):

(continues on next page)

4.3. API Reference 83

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

(continued from previous page)

print (topic_idx)

for j in top_docs:

. print (corpus[j]._.meta["title"])
0
THE MOST IMPORTANT ISSUES FACING THE AMERICAN PEOPLE

55TH ANNIVERSARY OF THE BATTLE OF CRETE

1

CHEMICAL WEAPONS CONVENTION

MEN STATUS FOR CHINA

>>> for doc_idx, topics in model.top_doc_topics (doc_topic_matrix, docs=range(5),
—top_n=2):

[

... print (corpus|[doc_idx]._.meta["title"], ":", topics)
JOIN THE SENATE AND PASS A CONTINUING RESOLUTION : (9, 0)
MEETING THE CHALLENGE : (2, 0)

DISPOSING OF SENATE AMENDMENT TO H.R. 1643, EXTENSION OF MOST-FAVORED- NATION,,

—TREATMENT FOR BULGARIA : (0, 9)

EXAMINING THE SPEAKER'S UPCOMING TRAVEL SCHEDULE : (0, 9)

FLOODING IN PENNSYLVANIA : (0, 9)

>>> for i, val in enumerate (model.topic_weights (doc_topic_matrix)):
print (i, wval)

.302796022302

.0635617650602

.0744927472417

.0905778808867

.0521162262192

.0656303769725

.0973516532757

.112907245542

.0680659204364

.0725001620636

O 0 J o U WDN B O -
O O O O O O o oo o -

Visualize the model:

>>> model.termite_plot (doc_term matrix, vectorizer.id_to_term,
topics=-1, n_terms=25, sort_terms_by="seriation")

Persist our topic model to disk:

>>> model.save ("nmf-10topics.pkl")

Parameters
e model ({“nmf”, “lda”, “Isa”} or sklearn.decomposition.<model>)—
* n_topics (int)—number of topics in the model to be initialized

* xxkwargs — variety of parameters used to initialize the model; see individual sklearn pages
for full details

Raises ValueError —if model notin {"nmf", "lda", "lsa"} orisnotan NMF, Latent-
DirichletAllocation, or TruncatedSVD instance

See also:

e http://scikit-learn.org/stable/modules/generated/sklearn.decomposition. NMF.html

* http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html

84

Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html

textacy Documentation, Release 0.10.1

e http://scikit-learn.org/stable/modules/generated/sklearn.decomposition. TruncatedSVD.html

get_doc_topic_matrix (doc_term_matrix, *, normalize=True)
Transform a document-term matrix into a document-topic matrix, where rows correspond to documents
and columns to the topics in the topic model.

Parameters

* doc_term matrix(array-like or sparse matrix)-—Corpusrepresented as
a document-term matrix with shape (n_docs, n_terms). LDA expects tf-weighting, while
NMF and LSA may do better with tfidf-weighting.

* normalize (bool) — if True, the values in each row are normalized, i.e. topic weights
on each document sum to 1

Returns Document-topic matrix with shape (n_docs, n_topics).
Return type numpy .ndarray

top_topic_terms (id2term, *, topics=- 1, top_n=10, weights=False)
Get the top t op_n terms by weight per topic in model.

Parameters

e id2term (list (str) or dict)— object that returns the term string corresponding
to term id i through id2term([i]; could be a list of strings where the index repre-
sents the term id, such as that returned by sklearn.feature_extraction.text.
CountVectorizer.get_feature_names (), or amapping of term id: term string

* topics (int or Sequence[int]) — topic(s) for which to return top terms; if -1
(default), all topics’ terms are returned

* top_n (int)—number of top terms to return per topic

* weights (bool) — if True, terms are returned with their corresponding topic weights;
otherwise, terms are returned without weights

Yields Tuple[int, Tuple[str]] or Tuple[int, Tuple[Tuple[str, float]]] — next tuple corresponding
to a topic; the first element is the topic’s index; if weight s is False, the second element is
a tuple of str representing the top top_n related terms; otherwise, the second is a tuple of
(str, float) pairs representing the top top_n related terms and their associated weights wrt
the topic; for example:

>>> list (TopicModel.top_topic_terms (id2term, topics=(0, 1), top_n=2,
— weilghts=False))

[(0, ('foo', 'bar')), (1, ('bat', 'baz'))]

>>> list (TopicModel.top_topic_terms (id2term, topics=0, top_n=2,
—weights=True))

[(0, (('foo', 0.1415), ('bar', 0.0986)))]

top_topic_docs (doc_topic_matrix, *, topics=- 1, top_n=10, weights=False)
Get the top t op_n docs by weight per topic in doc_topic_matrix.

Parameters

* doc_topic_matrix (numpy.ndarray) — document-topic matrix with shape
(n_docs, n_topics), the result of calling TopicModel.get_doc_topic_matrix()

* topiecs (int or Sequence[int]) - topic(s) for which to return top docs; if -1, all
topics’ docs are returned

* top_n (int)—number of top docs to return per topic

4.3.

API Reference 85

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

* weights (bool)-if True, docs are returned with their corresponding (normalized) topic
weights; otherwise, docs are returned without weights

Yields Tuple[int, Tuple[int]] or Tuple[int, Tuple[Tuple[int, float]]] — next tuple corresponding
to a topic; the first element is the topic’s index; if weight s is False, the second element is
a tuple of ints representing the top t op_n related docs; otherwise, the second is a tuple of
(int, float) pairs representing the top t op_n related docs and their associated weights wrt the
topic; for example:

>>> list (TopicModel.top_doc_terms (dtm, topics=(0, 1), top_n=2,
—weights=False))

[0, (4, 2)), (1, (1, 3))]

>>> list (TopicModel.top_doc_terms (dtm, topics=0, top_n=2,
—weights=True))

[(0, ((4, 0.3217), (2, 0.2154)))]

top_doc_topics (doc_topic_matrix, *, docs=- 1, top_n=3, weights=False)
Get the top top_n topics by weight per doc for docs in doc_topic_matrix.

Parameters

* doc_topic_matrix (numpy.ndarray) — document-topic matrix with shape
(n_docs, n_topics), the result of calling TopicModel.get_doc_topic_matrix()

* docs (int or Sequence[int])-docs for which to return top topics; if -1, all docs’
top topics are returned

* top_n (int)—number of top topics to return per doc

* weights (bool)-if True, docs are returned with their corresponding (normalized) topic
weights; otherwise, docs are returned without weights

Yields Tuple[int, Tuple[int]] or Tuple[int, Tuple[Tuple[int, float]]] — next tuple corresponding
to a doc; the first element is the doc’s index; if weights is False, the second element is a
tuple of ints representing the top top_n related topics; otherwise, the second is a tuple of
(int, float) pairs representing the top top_n related topics and their associated weights wrt
the doc; for example:

>>> list (TopicModel.top_doc_topics (dtm, docs=(0, 1), top_n=2,
—weilghts=False))

[(0, (1, 4)), (1, (3, 2))]

>>> list (TopicModel.top_doc_topics (dtm, docs=0, top_n=2,
—weights=True))

[(0, ((1, 0.2855), (4, 0.2412)))]1

topic_weights (doc_topic_matrix)
Get the overall weight of topics across an entire corpus. Note: Values depend on whether topic weights per
document in doc_topic_matrix were normalized, or not. I suppose either way makes sense... o_O

Parameters doc_topic_matrix (numpy.ndarray) — document-topic matrix with shape
(n_docs, n_topics), the result of calling TopicModel.get_doc_topic_matrix/()

Returns the ith element is the ith topic’s overall weight
Return type numpy.ndarray

termite_plot (doc_term_matrix, id2term, * topics=- 1, sort_topics_by='index',
highlight_topics=None, n_terms=25, rank_terms_by="topic_weight',
sort_terms_by='seriation’, save=False, rc_params=None)
Make a “termite” plot for assessing topic models using a tabular layout to promote comparison of terms
both within and across topics.

86 Chapter 4. contents

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

textacy Documentation, Release 0.10.1

Parameters

doc_term _matrix (numpy.ndarray or sparse matrix) — corpus represented as a
document-term matrix with shape (n_docs, n_terms); may have tf- or tfidf-weighting

id2term (List[str] or dict)— object that returns the term string corresponding
to term id i through id2term([i]; could be a list of strings where the index repre-
sents the term id, such as that returned by sklearn. feature_extraction.text.
CountVectorizer.get_feature_names (), or amapping of term id: term string

topics (int or Sequence[int]) — topic(s) to include in termite plot; if -1, all
topics are included

sort_topics_by ({'index', 'weight'})-—

highlight_topics (int or Sequence[int]) — indices for up to 6 topics to
visually highlight in the plot with contrasting colors

n_terms (int) - number of top terms to include in termite plot

rank_terms_by ({'topic_weight', 'corpus_weight'}) — value used to
rank terms; the top-ranked n_terms are included in the plot

sort_terms_by ({'seriation', 'weight', 'index',
'alphabetical'}) — method used to vertically sort the selected top n_terms
terms; the default (“seriation”) groups similar terms together, which facilitates cross-topic
assessment

save (str) — give the full /path/to/fname on disk to save figure rc_params (dict, op-
tional): allow passing parameters to rc_context in matplotlib.plyplot, details in https:
/fmatplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html

Returns Axis on which termite plot is plotted.

Return type matplotlib.axes.Axes.axis

Raises ValueError —if more than 6 topics are selected for highlighting, or an invalid value is
passed for the sort_topics_by, rank_terms_by, and/or sort_terms_by params

References

* Chuang, Jason, Christopher D. Manning, and Jeffrey Heer. “Termite: Visualization techniques for
assessing textual topic models.” Proceedings of the International Working Conference on Advanced
Visual Interfaces. ACM, 2012.

* for sorting by “seriation”, see https://arxiv.org/abs/1406.5370

See also:

viz.termite_plot

TODO: rank_terms_by other metrics, e.g. topic salience or relevance

4.3. API Reference

87

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1406.5370

textacy

Documentation, Release 0.10.1

4.3.8 1/0

text.

read_text

Read the contents of a text file at £ilepath, either all
at once or streaming line-by-line.

text.write_text Write text data to disk at £i1epath, either all at once
or streaming line-by-line.

json.read_ json Read the contents of a JSON file at filepath, either
all at once or streaming item-by-item.

json.write_json Write JSON data to disk at £ilepath, either all at

once or streaming item-by-item.

csv.read csv

Read the contents of a CSV file at filepath,
streaming line-by-line, where each line is a list of
strings and/or floats whose values are separated by
delimiter.

csv.write_ csv

Write rows of data to disk at filepath, where
each row is an iterable or a dictionary of strings and/or
numbers, written to one line with values separated by
delimiter.

matrix.read_sparse_matrix

Read the data, indices, indptr, and shape arrays from a
.npz file on disk at filepath, and return an instan-
tiated sparse matrix.

matri

x.write sparse matrix

Write sparse matrix data to disk at filepath, op-
tionally compressed, into a single . npz file.

spacy.read_spacy_docs

Read the contents of a file at £i1lepath, written either
in pickle or binary format.

spacy.write_spacy_docs

Write one or more Doc s to disk at £ilepath in either
pickle or binary format.

http.

read_http_stream

Read data from url in a stream, either all at once or
line-by-line.

http.

write http_stream

Download data from url in a stream, and write succes-
sive chunks to disk at filepath.

utils.open_sesame Open file filepath.

utils.split_records Split records’ content (text) from associated metadata,
but keep them paired together.

utils.unzip Borrowed from toolz.sandbox.core.unzip,
but using cytoolz instead of toolz to avoid the additional
dependency.

utils.get_filepaths Yield full paths of files on disk under directory
dirpath, optionally filtering for or against particular
patterns or file extensions and crawling all subdirecto-
ries.

utils.download file Download a file from url and save it to disk.

utils.unpack_archive Extract data from a zip or tar archive file into a directory

(or do nothing if the file isn’t an archive).

textacy.io.text: Functions for reading from and writing to disk records in plain text format, either as one text
per file or one text per line in a file.

textacy.io.text.read_text (filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding: Op-

tional[str] = None, lines: bool = False) — Iterable[str]
Read the contents of a text file at £ilepath, either all at once or streaming line-by-line.

Parameters

88

Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

filepath — Path to file on disk from which data will be read.
mode — Mode with which £ilepath is opened.

encoding — Name of the encoding used to decode or encode the datain £ilepath. Only
applicable in text mode.

lines — If False, all data is read in at once; otherwise, data is read in one line at a time.

Yields Next line of text to read in.

If 1ines is False, wrap this output in next () to conveniently access the full text.

textacy.io.text.write_text (data: Union[str, Iterable[str]], filepath: Union[str, pathlib.Path], *,

mode: str = 'wt', encoding: Optional[str] = None, make_dirs: bool =
False, lines: bool = False) — None

Write text data to disk at £ilepath, either all at once or streaming line-by-line.

Parameters

If lines is False (data) — “isnt rick and morty that thing you get when you die
and your body gets all stiff”

If 1ines is True, an iterable of strings to write to disk, one item per line; for example:

["isnt rick and morty that thing you get when you die and your
—body gets all stiff",

"You're thinking of rigor mortis. Rick and morty is when you get,
—~trolled into watching "never gonna give you up"",

"That's rickrolling. Rick and morty is a type of pasta"]

single string to write to disk; for example:: (a) — ‘“isnt rick and
morty that thing you get when you die and your body gets all stiff”

If 1ines is True, an iterable of strings to write to disk, one item per line; for example:

["isnt rick and morty that thing you get when you die and your_
—body gets all stiff",

"You're thinking of rigor mortis. Rick and morty is when you get,
—~trolled into watching "never gonna give you up"",

"That's rickrolling. Rick and morty is a type of pasta"]

filepath — Path to file on disk to which data will be written.
mode — Mode with which filepath is opened.

encoding — Name of the encoding used to decode or encode the datain £ilepath. Only
applicable in text mode.

make_dirs — If True, automatically create (sub)directories if not already present in order
to write filepath.

lines - If False, all data is written at once; otherwise, data is written to disk one line at a
time.

textacy.io. json: Functions for reading from and writing to disk records in JSON format, as one record per file
or one record per /ine in a file.

textacy.io. json.read_json (filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding: Op-

tional[str] = None, lines: bool = False) — Iterable

Read the contents of a JSON file at £ilepath, either all at once or streaming item-by-item.

Parameters

filepath — Path to file on disk from which data will be read.

4.3. API Reference 89

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.10.1

* mode — Mode with which filepath is opened.

* encoding — Name of the encoding used to decode or encode the datain £ilepath. Only
applicable in text mode.

* lines — If False, all data is read in at once; otherwise, data is read in one line at a time.

Yields Next JSON item; could be a dict, list, int, float, str, depending on the data and the value of
lines.

textacy.io. json.read_json_mash (filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding:
Optional[str] = None, buffer_size: int = 2048) — Iterable
Read the contents of a JSON file at filepath one item at a time, where all of the items have been mashed
together, end-to-end, on a single line.

Parameters
* filepath — Path to file on disk to which data will be written.
* mode — Mode with which filepath is opened.

* encoding — Name of the encoding used to decode or encode the datain £ilepath. Only
applicable in text mode.

* buffer_ size — Number of bytes to read in as a chunk.

Yields Next valid JSON object, converted to native Python equivalent.

Note: Storing JSON data in this format is Not Good. Reading it is doable, so this function is included for users’
convenience, but note that there is no analogous write_json_mash () function. Don’t do it.

textacy.io. json.write_json (data: Any, filepath: Union[str, pathlib.Path], *, mode: str = 'wt', en-
coding: Optional[str] = None, make_dirs: bool = False, lines: bool =

False, ensure_ascii: bool = False, separators: Tuple[str, str] ="', "*',
sort_keys: bool = False, indent: Optional[Union[int, str]] = None) —

None
Write JSON data to disk at £i1lepath, either all at once or streaming item-by-item.
Parameters

* data — JSON data to write to disk, including any Python objects encodable by default in
json, as well as dates and datetimes. For example:

[

{"title": "Harrison Bergeron", "text": "The year was 2081, and,
—everybody was finally equal."},

{"title": "2BRO2B", "text": "Everything was perfectly swell."},

{"title": "Slaughterhouse-Five", "text": "All this happened,

—more or less."},

]

If 1ines is False, all of data is written as a single object; if True, each item is written to
a separate line in filepath.

filepath — Path to file on disk to which data will be written.
* mode — Mode with which filepath is opened.

* encoding — Name of the encoding used to decode or encode the datain £ilepath. Only
applicable in text mode.

920 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/json.html#module-json

textacy Documentation, Release 0.10.1

* make_dirs - If True, automatically create (sub)directories if not already present in order
to write filepath.

e lines - If False, all data is written at once; otherwise, data is written to disk one item at a
time.

* ensure_ascii — If True, all non-ASCII characters are escaped; otherwise, non-ASCII
characters are output as-is.

* separators — An (item_separator, key_separator) pair specifying how items and keys are
separated in output.

* sort_keys — If True, each output dictionary is sorted by key; otherwise, dictionary order-
ing is taken as-is.

* indent — If a non-negative integer or string, items are pretty-printed with the specified
indent level; if 0, negative, or “”, items are separated by newlines; if None, the most compact
representation is used when storing data.

See also:

https://docs.python.org/3/library/json.html#json.dump

class textacy.io.json.ExtendedJSONEncoder (¥, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separa-

tors=None, default=None)
Sub-class of json.JSONEncoder, used to write JSON data to disk in write_ json () while handling a

broader range of Python objects.
e datetime.datet ime =>ISO-formatted string
e datetime.date =>ISO-formatted string

default (obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default (self, o):

try:
iterable = iter (o)
except TypeError:
pass
else:

return list (iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default (self, o)

textacy.io.csv: Functions for reading from and writing to disk records in CSV format, where CSVs may be
delimited not only by commas (the default) but tabs, pipes, and other valid one-char delimiters.

textacy.io.csv.read_ecsv (filepath: Union[str, pathlib.Path], *, encoding: Optional[str] = None, field-
names: Optional[Union[str, Sequence[str]]] = None, dialect: Union/str,
Type[csv.Dialect]] = 'excel’, delimiter: str =)', quoting: int = 2) — Iter-
able[Union[list, dict]]
Read the contents of a CSV file at filepath, streaming line-by-line, where each line is a list of strings and/or
floats whose values are separated by delimiter.

Parameters

* filepath — Path to file on disk from which data will be read.

4.3. API Reference 91

https://docs.python.org/3/library/json.html#json.dump
https://docs.python.org/3/library/json.html#json.JSONEncoder
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

textacy Documentation, Release 0.10.1

encoding — Name of the encoding used to decode or encode the datain filepath.

fieldnames - If specified, gives names for columns of values, which are used as keys
in an ordered dictionary representation of each line’s data. If ‘infer’, the first kB of data is
analyzed to make a guess about whether the first row is a header of column names, and if so,
those names are used as keys. If None, no column names are used, and each line is returned
as a list of strings/floats.

dialect — Grouping of formatting parameters that determine how the data is parsed when
reading/writing. If ‘infer’, the first kB of data is analyzed to get a best guess for the correct
dialect.

delimiter — l-character string used to separate fields in a row.

quoting — Type of quoting to apply to field values. See: https://docs.python.org/3/library/
csv.html#csv.QUOTE_NONNUMERIC

Yields List/obj] — Next row, whose elements are strings and/or floats. If fieldnames is None or
‘infer’ doesn’t detect a header row.

or

Dict[str, obj]: Next row, as an ordered dictionary of (key, value) pairs, where keys are column
names and values are the corresponding strings and/or floats. If fieldnames is alist of column
names or ‘infer’ detects a header row.

See also:

https://docs.python.org/3/library/csv.html#csv.reader

textacy.io.csv.write_csv (data: Union[lterable[Dict[str, Any]], Iterable[lterable]], filepath:

Union[str, pathlib.Path], *, encoding: Optional[str] = None, make_dirs:
bool = False, fieldnames: Optional[Sequence[str]] = None, dialect: str =
‘excel’, delimiter: str =',', quoting: int = 2) — None

Write rows of data to disk at £ilepath, where each row is an iterable or a dictionary of strings and/or
numbers, written to one line with values separated by delimiter.

Parameters

data - If fieldnames is None, an iterable of iterables of strings and/or numbers to write
to disk; for example:

[['That was a great movie!', 0.9],
['"The movie was okay, I guess.', 0.2],
['"Worst. Movie. Ever.', -1.0]]

If fieldnames is specified, an iterable of dictionaries with string and/or number values to
write to disk; for example:

[{"text': 'That was a great movie!', 'score': 0.9},
{'text': 'The movie was okay, I guess.', 'score': 0.2},
{'text': '"Worst. Movie. Ever.', 'score': -1.0}]

filepath — Path to file on disk to which data will be written.
encoding — Name of the encoding used to decode or encode the datain filepath.

make_dirs - If True, automatically create (sub)directories if not already present in order
to write filepath.

fieldnames — Sequence of keys that identify the order in which values in each rows’
dictionary is written to £ilepath. These are included in filepath as a header row of
column names.

92

Chapter 4. contents

https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.reader
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.10.1

Note: Only specify this if data is an iterable of dictionaries.

* dialect — Grouping of formatting parameters that determine how the data is parsed when
reading/writing.

* delimiter — l-character string used to separate fields in a row.

* quoting - Type of quoting to apply to field values. See: https://docs.python.org/3/library/
csv.html#csv.QUOTE_NONNUMERIC

See also:
https://docs.python.org/3/library/csv.html#csv.writer

textacy.io.matrix: Functions for reading from and writing to disk CSC and CSR sparse matrices in numpy
binary format.

textacy.io.matrix.read_sparse_matrix (filepath: Union[str, pathlib.Path], *, kind: str
= cs¢’) — Union[scipy.sparse.csc.csc_matrix,

scipy.sparse.csr.csr_matrix|
Read the data, indices, indptr, and shape arrays from a . npz file on disk at £ilepath, and return an instanti-

ated sparse matrix.
Parameters
e filepath - Path to file on disk from which data will be read.
* kind ({ 'csc', 'csr'})—Kind of sparse matrix to instantiate.
Returns An instantiated sparse matrix, whose type depends on the value of kind.
See also:
https://docs.scipy.org/doc/numpy- 1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz

textacy.io.matrix.write_sparse_matrix (data: Union[scipy.sparse.csc.csc_matrix,
scipy.sparse.csr.csr_matrix], filepath: Union|[str,
pathlib.Path], *, compressed: bool = True, make_dirs:

))) bool = False) — None)
Write sparse matrix data to disk at £i lepath, optionally compressed, into a single . npz file.

Parameters
e data -

* filepath — Path to file on disk to which data will be written. If £i1epath does not end
in . npz, that extension is automatically appended to the name.

* compressed — If True, save arrays into a single file in compressed numpy binary format.

* make_dirs — If True, automatically create (sub)directories if not already present in order
to write £ilepath.

See also:
https://docs.scipy.org/doc/numpy- 1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz

textacy.io.spacy: Functions for reading from and writing to disk spacy documents in either pickle or binary
format. Be warned: Both formats have pros and cons.

textacy.io.spacy.read_spacy_docs (filepath: Union[str, pathlib.Path], *, format: str = 'pickle’,
lang: Optional[Union[str, spacy.language.Language]] =
None) — Iterable[spacy.tokens.doc.Doc]
Read the contents of a file at £i1lepath, written either in pickle or binary format.

4.3. API Reference 93

https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.writer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Parameters
* filepath — Path to file on disk from which data will be read.

e format ({"pickle", "binary"}) - Format of the data that was written to disk. If
‘pickle’, use pickle in python’s stdlib; if ‘binary’, use the 3rd-party msgpack library.

Warning: Docs written in pickle format were saved all together as a list, which means
they’re all loaded into memory at once before streaming one by one. Mind your RAM
usage, especially when reading many docs!

Warning: When writing docs in binary format, spaCy’s built-in spacy.
Doc.to_bytes () method is used, but when reading the data back in
read_spacy._docs (), experimental and unofficial work-arounds are used to allow
for all the docs in data to be read from the same file. If spaCy changes, this code could
break, so use this functionality at your own risk!

* lang — Already-instantiated spacy .Language object, or the string name by which it
can be loaded, used to process the docs written to disk at £ilepath. Note that this is only
applicable when format="binary".

Yields Next deserialized document.
Raises
* ValueError — if format is not “pickle” or “binary”
* TypeError —if lang is None when format="binary"

textacy.io.spacy.write_spacy_docs (data: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.doc.Doc]], filepath: Union[str, path-
lib.Path], *, make_dirs: bool = False, format: str =
'pickle’, exclude: Sequence[str] = 'tensor', include_tensor:

Optional[bool] = None) — None
Write one or more Doc s to disk at £ilepath in either pickle or binary format.

Parameters
* data — A single Doc or a sequence of Doc s to write to disk.
* filepath — Path to file on disk to which data will be written.

* make_dirs - If True, automatically create (sub)directories if not already present in order
to write filepath.

* format ({"pickle", "binary"})— Format of the data written to disk. If “pickle”,
use python’s stdlib pickle; if “binary”, use the 3rd-party msgpack library.

Warning: When writing docs in pickle format, all the docs in data must be saved as
a list, which means they’re all loaded into memory. Mind your RAM usage, especially
when writing many docs!

94 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.10.1

Warning: When writing docs in binary format, spaCy’s built-in spacy.
Doc.to_bytes () method is used, but when reading the data back in
read_spacy_docs (), experimental and unofficial work-arounds are used to allow
for all the docs in data to be read from the same file. If spaCy changes, this code could
break, so use this functionality at your own risk!

* exclude (List [str])-String names of serialization fields to exclude; see https://spacy.
io/api/doc#serialization-fields for options. By default, excludes tensors in order to reproduce
existing behavior of include_tensor=False.

* include_tensor (bool)—- DEPRECATED! Use exclude instead. If False, Doc ten-
sors are not written to disk; otherwise, they are. Note that this is only applicable when
format="binary". Also note that including tensors significantly increases the file size
of serialized docs.

Raises ValueError — if format is not “pickle” or “binary”

textacy.io.http: Functions for reading data from URLSs via streaming HTTP requests and either reading it into
memory or writing it directly to disk.

textacy.io.http.read_http_stream (url: str, * lines: bool = False, decode_unicode: bool = False,
chunk_size: int = 1024, auth: Optional[Tuple[str, str]] =

None) — Union[Iterable[str], Iterable[bytes]]
Read data from url in a stream, either all at once or line-by-line.

Parameters
* url — URL to which a GET request is made for data.
* lines - If False, yield all of the data at once; otherwise, yield data line-by-line.

* decode_unicode - If True, yield data as unicode, where the encoding is taken from the
HTTP response headers; otherwise, yield bytes.

* chunk_size — Number of bytes read into memory per chunk. Because decoding may
occur, this is not necessarily the length of each chunk.

* auth - (username, password) pair for simple HTTP authentication required (if at all) to
access the data at url.

See also:
http://docs.python-requests.org/en/master/user/authentication/

Yields If 1ines is True, the next line in the response data, which is bytes if decode_unicode is
False or unicode otherwise. If 1ines is False, yields the full response content, either as bytes
or unicode.

textacy.io.http.write_http_stream (url: str, filepath: Union[str, pathlib.Path], *, mode: str
‘wt', encoding: Optional[str] = None, make_dirs: bool
False, chunk_size: int = 1024, auth: Optional[Tuple[str,

str]] = None) — None
Download data from url in a stream, and write successive chunks to disk at filepath.

Parameters
* url — URL to which a GET request is made for data.
* filepath — Path to file on disk to which data will be written.

* mode — Mode with which f£ilepath is opened.

4.3. API Reference 95

https://docs.python.org/3/library/stdtypes.html#str
https://spacy.io/api/doc#serialization-fields
https://spacy.io/api/doc#serialization-fields
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
http://docs.python-requests.org/en/master/user/authentication/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.10.1

* encoding — Name of the encoding used to decode or encode the datain £ilepath. Only
applicable in text mode.

Note: The encoding on the HTTP response is inferred from its headers, or set to ‘utf-8’ as
a fall-back in the case that no encoding is detected. It is not set by encoding.

* make_dirs — If True, automatically create (sub)directories if not already present in order
to write filepath.

* chunk_size — Number of bytes read into memory per chunk. Because decoding may
occur, this is not necessarily the length of each chunk.

* auth - (username, password) pair for simple HTTP authentication required (if at all) to
access the data at url.

See also:

http://docs.python-requests.org/en/master/user/authentication/

I/0 Utils

textacy.io.utils: Functions to help read and write data to disk in a variety of formats.

textacy.io.utils.open_sesame (filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding:
Optional[str] = None, errors: Optional[str] = None, newline: Op-
tional[str] = None, compression: str = 'infer', make_dirs: bool =

False) — 10
Open file filepath. Automatically handle file compression, relative paths and symlinks, and missing inter-

mediate directory creation, as needed.
open_sesame may be used as a drop-in replacement for io . open ().
Parameters
* filepath — Path on disk (absolute or relative) of the file to open.
* mode — The mode in which filepath is opened.

* encoding - Name of the encoding used to decode or encode £ilepath. Only applicable
in text mode.

* errors — String specifying how encoding/decoding errors are handled. Only applicable in
text mode.

* newline - String specifying how universal newlines mode works. Only applicable in text
mode.

* compression — Type of compression, if any, with which filepath is read from or
written to disk. If None, no compression is used; if ‘infer’, compression is inferrred from
the extension on filepath.

* make_dirs — If True, automatically create (sub)directories if not already present in order
to write filepath.

Returns file object
Raises
* TypeError —if filepath is not a string

* ValueError —if encoding is specified but mode is binary

96 Chapter 4. contents

http://docs.python-requests.org/en/master/user/authentication/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/io.html#io.open
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

e OSError —if filepath doesn’t exist but mode is read

textacy.io.utils.coerce_content_type (content: Union[str, bytes], file_mode: str) —
Union(str, bytes]
If the content to be written to file and the file_mode used to open it are incompatible (either bytes with text mode
or unicode with bytes mode), try to coerce the content type so it can be written.

textacy.io.utils.split_records (items: Iterable, content field: Union[str, int], itemwise: bool =

False) — Iterable
Split records’ content (text) from associated metadata, but keep them paired together.

Parameters

* items — An iterable of dicts, e.g. as read from disk by read json (1ines=True), or
an iterable of lists, e.g. as read from disk by read_csv ().

* content_field - If str, key in each dict item whose value is the item’s content (text); if
int, index of the value in each list item corresponding to the item’s content (text).

* itemwise — If True, content + metadata are paired item-wise as an iterable of (content,
metadata) 2-tuples; if False, content + metadata are paired by position in two parallel iter-
ables in the form of a (iterable(content), iterable(metadata)) 2-tuple.

Returns

If itemwise is True and items is Iterable[dict]; the first element in each tuple is the item’s
content, the second element is its metadata as a dictionary.

Generator(Tuple[str, list]): If itemwise is True and items is Iterable[list]; the first element
in each tuple is the item’s content, the second element is its metadata as a list.

Tuple[Iterable[str], Iterable[dict]]: If itemwise is False and items is Iterable[dict]; the first
element of the tuple is an iterable of items’ contents, the second is an iterable of their metadata
dicts.

Tuple[Iterable[str], Iterable[list]]: If itemwise is False and items is Iterable[list]; the first
element of the tuple is an iterable of items’ contents, the second is an iterable of their metadata
lists.

Return type Generator(Tuple[str, dict])

textacy.io.utils.unzip (seq: Iterable) — Tuple
Borrowed from toolz.sandbox.core.unzip, but using cytoolz instead of toolz to avoid the additional
dependency.

textacy.io.utils.get_filepaths (dirpath: Union[str, pathlib.Path], *, match_regex: Optional[str]
= None, ignore_regex: Optional[str] = None, extension: Op-
tional[str] = None, ignore_invisible: bool = True, recursive:

bool = False) — Iterable[str]
Yield full paths of files on disk under directory dirpath, optionally filtering for or against particular patterns

or file extensions and crawling all subdirectories.
Parameters
* dirpath - Path to directory on disk where files are stored.

* match_regex — Regular expression pattern. Only files whose names match this pattern
are included.

* ignore_regex — Regular expression pattern. Only files whose names do not match this
pattern are included.

* extension - File extension, e.g. “.txt” or “.json”. Only files whose extensions match are
included.

4.3. API Reference 97

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

* ignore_invisible - If True, ignore invisible files, i.e. those that begin with a period.;
otherwise, include them.

* recursive — If True, iterate recursively through subdirectories in search of files to in-
clude; otherwise, only return files located directly under dirpath.

Yields Next file’s name, including the full path on disk.
Raises OSError —if dirpath is not found on disk

textacy.io.utils.download_ file (url: Str, * filename: str = None,
dirpath: Union|[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/0.10. 1/lib/pyt
packages/textacy/data’), force: bool = False) — Optional[str]
Download a file from url and save it to disk.

Parameters
e url — Web address from which to download data.

e filename — Name of the file to which downloaded data is saved. If None, a filename will
be inferred from the url.

* dirpath - Full path to the directory on disk under which downloaded data will be saved
as filename.

* force - If True, download the data even if it already exists at dirpath/filename;
otherwise, only download if the data doesn’t already exist on disk.

Returns Full path of file saved to disk.

textacy.io.utils.get_filename_from_url (url: str) — str
Derive a filename from a URL’s path.

Parameters url — URL from which to extract a filename.
Returns Filename in URL.

textacy.io.utils.unpack_archive (filepath: Union[str, pathlib.Path], *, extract_dir: Union/[str,
pathlib.Path] = None) — Union[str, pathlib.Path]
Extract data from a zip or tar archive file into a directory (or do nothing if the file isn’t an archive).

Parameters
» filepath — Full path to file on disk from which archived contents will be extracted.

* extract_dir — Full path of the directory into which contents will be extracted. If not
provided, the same directory as £ilepath is used.

Returns Path to directory of extracted contents.

4.3.9 Visualization

textacy.viz.termite.draw_termite_plot (values_mat, col_labels, row_labels, *, high-
light_cols=None, highlight_colors=None,
save=False, rc_params=None)
Make a “termite” plot, typically used for assessing topic models with a tabular layout that promotes comparison

of terms both within and across topics.

Parameters

* values_mat (np.ndarray or matrix) — matrix of values with shape (# row labels, # col
labels) used to size the dots on the grid

98 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.10.1

col_labels (seqg[str])— labels used to identify x-axis ticks on the grid
row_labels (seqg [str])— labels used to identify y-axis ticks on the grid

highlight_cols (int or seqg[int], optional)-indices for columns to visu-
ally highlight in the plot with contrasting colors

highlight_colors (tuple of 2-tuples)— each 2-tuple corresponds to a pair of
(light/dark) matplotlib-friendly colors used to highlight a single column; if not specified
(default), a good set of 6 pairs are used

save (str, optional)- give the full /path/to/fname on disk to save figure

rc_params (dict, optional) — allow passing parameters to rc_context in
matplotlib.plyplot, details in https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_
context.html

Returns Axis on which termite plot is plotted.

Return type matplotlib.axes.Axes.axis

Raises ValueError — if more columns are selected for highlighting than colors or if any of the
inputs’ dimensions don’t match

References

Chuang, Jason, Christopher D. Manning, and Jeffrey Heer. “Termite: Visualization techniques for assessing
textual topic models.” Proceedings of the International Working Conference on Advanced Visual Interfaces.

ACM, 2012.

See also:

TopicModel.termite_plot ()

textacy.viz.termite.termite_df plot (components, *, highlight topics=None, n_terms=235,

rank_terms_by="max’, sort_terms_by='seriation’,
save=False, rc_params=None)

Make a “termite” plot for assessing topic models using a tabular layout to promote comparison of terms both
within and across topics.

Parameters

components (pandas.DataFrame or sparse matrix) — corpus represented as a term-
topic matrix with shape (n_terms, n_topics); should have terms as index and topics as col-
umn names

topiecs (int or Sequence[int])—topic(s)toinclude in termite plot; if -1, all topics
are included

highlight_topics (str or Sequence[str])-names for up to 6 topics to visu-
ally highlight in the plot with contrasting colors

n_terms (int)—number of top terms to include in termite plot

rank_terms_by ({ 'max', 'mean', 'var'}) - argument to dataframe agg func-
tion, used to rank terms; the top-ranked n_terms are included in the plot

sort_terms_by ({'seriation', 'weight', 'index',
'alphabetical'}) — method used to vertically sort the selected top n_terms
terms; the default (“seriation”) groups similar terms together, which facilitates cross-topic
assessment

4.3. API Reference

99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axis.html#matplotlib.axes.Axes.axis
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

* save (str)— give the full /path/to/fname on disk to save figure rc_params (dict, optional):
allow passing parameters to rc_context in matplotlib.plyplot, details in https://matplotlib.
org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html

Returns Axis on which termite plot is plotted.
Return type matplotlib.axes.Axes.axis

Raises ValueError — if more than 6 topics are selected for highlighting, or an invalid value is
passed for the sort_topics_by, rank_terms_by, and/or sort_terms_by params

References

¢ Chuang, Jason, Christopher D. Manning, and Jeffrey Heer. ‘“Termite: Visualization techniques for
assessing textual topic models.” Proceedings of the International Working Conference on Advanced
Visual Interfaces. ACM, 2012.

* Fajwel Fogel, Alexandre d’Aspremont, and Milan Vojnovic. 2016. Spectral ranking using seriation. J.
Mach. Learn. Res. 17, 1 (January 2016), 3013-3057.
See also:
viz.termite_plot
TODO: rank_terms_by other metrics, e.g. topic salience or relevance

textacy.viz.network.draw_semantic_network (graph, * node_weights=None, spread=3.0,

draw_nodes=Fulse, base_node_size=300,
node_alpha=0.25, line_width=0.5,
line_alpha=0.1, base_font_size=12,

save=False)
Draw a semantic network with nodes representing either terms or sentences, edges representing coocurrence or

similarity, and positions given by a force- directed layout.
Parameters
* graph (networkx.Graph) —

* node_weights (dict) — mapping of node: weight, used to size node labels (and, op-
tionally, node circles) according to their weight

* spread (float)—number that drives the spread of the network; higher values give more
spread-out networks

e draw_nodes (bool) —if True, circles are drawn under the node labels

* base_node_size (int)—if node_weights not given and draw_nodes is True, this is the
size of all nodes in the network; if node_weights _is_ given, node sizes will be scaled against
this value based on their weights compared to the max weight

* node_alpha (f1oat) — alpha of the circular nodes drawn behind labels if draw_nodes is
True

* line_width (f1oat)— width of the lines (edges) drawn between nodes
* line_alpha (float)— alpha of the lines (edges) drawn between nodes

* base_font_size (int) — if node_weights not given, this is the font size used to draw
all labels; otherwise, font sizes will be scaled against this value based on the corresponding
node weights compared to the max

* save (str) — give the full /path/to/fname on disk to save figure (optional)

100 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Returns Axis on which network plot is drawn.

Return type matplotlib.axes.Axes.axis

Note: This function requires matplotlib.

4.3.10 Data Augmentation

augmenter.Augmenter

Randomly apply one or many data augmentation trans-
forms to spaCy Doc s to produce new docs with addi-
tional variety and/or noise in the data.

transforms.

substitute_word synonyms

Randomly substitute words for which synonyms are
available with a randomly selected synonym, up to num
times or with a probability of num.

transforms.

insert_word_synonyms

Randomly insert random synonyms of tokens for which
synonyms are available, up to num times or with a prob-
ability of num.

transforms.

swap_words

Randomly swap the positions of two adjacent words, up
to num times or with a probability of num.

transforms.

delete _words

Randomly delete words, up to num times or with a prob-
ability of num.

transforms.

substitute chars

Randomly substitute a single character in randomly-
selected words with another, up to num times or with
a probability of num.

transforms

.insert_chars

Randomly insert a character into randomly-selected
words, up to num times or with a probability of num.

transforms.

swap_chars

Randomly swap two adjacent characters in randomly-
selected words, up to num times or with a probability of
num.

transforms.

delete _chars

Randomly delete a character in randomly-selected
words, up to num times or with a probability of num.

utils.to_aug_toks

Transform a spaCy Doc or Span into a list of AugTok
objects, suitable for use in data augmentation transform
functions.

utils.get_char_weights

Get lang-specific character weights for use in cer-
tain data augmentation transforms, based on texts in
textacy.datasets.UDHR.

class textacy.augmentation.augmenter.Augmenter (tfransforms: Sequence[Callable], *,

num: Optional[Union[int, float, Se-
quencef[float]]] = None)

Randomly apply one or many data augmentation transforms to spaCy Doc s to produce new docs with additional
variety and/or noise in the data.

Initialize an Augmenter with multiple transforms, and customize the randomization of their selection when
applying to a document:

>>> tfs [transforms.delete_words, transforms.swap_chars, transforms.delete_
—chars]

>>> Augmenter (tfs, num=None) # all tfs applied each time

>>> Augmenter (tfs, num=1) # one randomly-selected tf applied each time

(continues on next page)

4.3. API Reference

101

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axis.html#matplotlib.axes.Axes.axis
https://matplotlib.org/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

(continued from previous page)

>>> Augmenter (tfs, num=0.5) # tfs randomly selected with 50% prob each time
>>> augmenter = Augmenter (tfs, num=[0.4, 0.8, 0.6]) # tfs randomly selected with,,
—~40%, 80%, 60% probs, respectively, each time

Apply transforms to a given Doc to produce new documents:

>>> text = "The quick brown fox jumps over the lazy dog."
>>> doc = textacy.make_spacy_doc (text, lang="en")

>>> augmenter.apply_transforms (doc)

The gquick brown ox jupms over the lazy dog.

>>> augmenter.apply_transforms (doc)

The quikc brown fox over the lazy dog.

>>> augmenter.apply_transforms (doc)

quick brown fox jumps over teh lazy dog.

Parameters for individual transforms may be specified when initializing Augmenter or, if necessary, when
applying to individual documents:

>>> from functools import partial

>>> tfs = [partial (transforms.delete_words, num=3), transforms.swap_chars]

>>> augmenter = Augmenter (tfs)

>>> augmenter.apply_transforms (doc)

brown fox jumps over layz dog.

>>> augmenter.apply_transforms (doc, lang=doc.lang) # (not actually needed for,
—these tfs)

quick brown fox over teh lazy.

Parameters

* transforms — Ordered sequence of callables that must take ListfAugTok] as their first
positional argument and return another List{AugTok].

Note: Although the particular transforms applied may vary doc-by-doc, they are applied
in order as listed here. Since some transforms may clobber text in a way that makes other
transforms less effective, a stable ordering can improve the quality of augmented data.

* num — If int, number of transforms to randomly select from transforms each time
Augmenter.apply_tranforms () is called. If float, probability that any given trans-
form will be selected. If Sequence[float], the probability that the corresponding transform
in transforms will be selected (these must be the same length). If None (default), num
issetto len (transforms), which means that every transform is applied each time.

See also:

A collection of general-purpose transforms are implemented in textacy.augmentation.transforms.

apply_transforms (doc: spacy.tokens.doc.Doc, **kwargs) — spacy.tokens.doc.Doc
Sequentially apply some subset of data augmentation transforms to doc, then return a new Doc created
from the augmented text.

Parameters
e doc -

* xxkwargs — If, for whatever reason, you have to pass keyword argument values into

102 Chapter 4. contents

textacy Documentation, Release 0.10.1

transforms that vary or depend on characteristics of doc, specify them here. The trans-
forms’ call signatures will be inspected, and values will be passed along, as needed.

Returns spacy.tokens.Doc

textacy.augmentation.transforms.substitute_word synonyms (aug_roks:
List[textacy.augmentation.utils. AugTok],

* num: Union[int,
float] = 1, pos: Op-
tional[Union/str,

Set[str]]] = None) —

List[textacy.augmentation.utils.AugTok]
Randomly substitute words for which synonyms are available with a randomly selected synonym, up to num

times or with a probability of num.
Parameters
* aug_toks — Sequence of tokens to augment through synonym substitution.

* num — If int, maximum number of words with available synonyms to substitute with a
randomly selected synonym,; if float, probability that a given word with synonyms will be
substituted.

* pos — Part of speech tag(s) of words to be considered for augmentation. If None, all words
with synonyms are considered.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.resources.ConceptNet to be downloaded to work properly,
since this is the data source for word synonyms to be substituted.

textacy.augmentation.transforms.insert_word_synonyms (aug_toks:
List[textacy.augmentation.utils. AugTok],
* num: Union[int, float] = 1,
pos: Optional[Union[str,
Set[str]]] = None) —

List[textacy.augmentation.utils.AugTok]
Randomly insert random synonyms of tokens for which synonyms are available, up to num times or with a

probability of num.
Parameters
* aug_toks — Sequence of tokens to augment through synonym insertion.

* num — If int, maximum number of words with available synonyms from which a random
synonym is selected and randomly inserted; if float, probability that a given word with
synonyms will provide a synonym to be inserted.

» pos — Part of speech tag(s) of words to be considered for augmentation. If None, all words
with synonyms are considered.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.resources.ConceptNet to be downloaded to work properly,
since this is the data source for word synonyms to be inserted.

4.3. API Reference 103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

textacy.augmentation.transforms.swap_words (aug_toks: List[textacy.augmentation.utils.AugTok],
* num: Unionf[int, float] = 1, pos: Op-
tional[Union[str, Set[str]]] = None) —

List[textacy.augmentation.utils. AugTok]
Randomly swap the positions of two adjacent words, up to num times or with a probability of num.

Parameters
* aug_toks — Sequence of tokens to augment through position swapping.

* num — If int, maximum number of adjacent word pairs to swap; if float, probability that a
given word pair will be swapped.

* pos — Part of speech tag(s) of words to be considered for augmentation. If None, all words
are considered.

Returns New, augmented sequence of tokens.

textacy.augmentation.transforms.delete_words (aug_toks: List[textacy.augmentation.utils.AugTok],
* num: Union[int, float] = I, pos: Op-
tional[Union[str, Set[str]]] = None) —

List[textacy.augmentation.utils.AugTok]
Randomly delete words, up to num times or with a probability of num.

Parameters
* aug_toks — Sequence of tokens to augment through word deletion.

* num — If int, maximum number of words to delete; if float, probability that a given word
will be deleted.

* pos — Part of speech tag(s) of words to be considered for augmentation. If None, all words
are considered.

Returns New, augmented sequence of tokens.

textacy.augmentation.transforms.substitute_chars (aug_toks:
List[textacy.augmentation.utils.AugTok],
* num: Union[int, float] = 1,
lang: Optional[str] = None) —
List[textacy.augmentation.utils.AugTok]
Randomly substitute a single character in randomly-selected words with another, up to num times or with a

probability of num.
Parameters
* aug_toks — Sequence of tokens to augment through character substitution.

* num — If int, maximum number of words to modify with a random character substitution; if
float, probability that a given word will be modified.

* lang — Standard, two-letter language code corresponding to aug_toks. Used to load
a weighted distribution of language-appropriate characters that are randomly selected for
substitution. More common characters are more likely to be substituted. If not specified,
ascii letters and digits are randomly selected with equal probability.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.datasets.UDHR to be downloaded to work properly, since this is
the data source for character weights when deciding which char(s) to insert.

104 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

textacy.augmentation.transforms.insert_chars (aug_toks: List[textacy.augmentation.utils.AugTok],
* num: Union[int, float] = 1,
lang: Optional[str] = None) —
List[textacy.augmentation.utils.AugTok]
Randomly insert a character into randomly-selected words, up to num times or with a probability of num.

Parameters
* aug_toks — Sequence of tokens to augment through character insertion.

* num — If int, maximum number of words to modify with a random character insertion; if
float, probability that a given word will be modified.

* lang — Standard, two-letter language code corresponding to aug_toks. Used to load
a weighted distribution of language-appropriate characters that are randomly selected for
substitution. More common characters are more likely to be substituted. If not specified,
ascii letters and digits are randomly selected with equal probability.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.datasets.UDHR to be downloaded to work properly, since this is
the data source for character weights when deciding which char(s) to insert.

textacy.augmentation.transforms.swap_chars (aug_toks: List[textacy.augmentation.utils. AugTok],
* num: Unionf[int, float] = 1) —
List[textacy.augmentation.utils.AugTok)
Randomly swap two adjacent characters in randomly-selected words, up to num times or with a probability of

num.
Parameters
* aug_toks — Sequence of tokens to augment through character swapping.

* num — If int, maximum number of words to modify with a random character swap; if float,
probability that a given word will be modified.

Returns New, augmented sequence of tokens.

textacy.augmentation.transforms.delete_chars (aug_toks: List[textacy.augmentation.utils.AugTok],
* num: Union[int, float] = 1) —
List[textacy.augmentation.utils.Aug Tok]
Randomly delete a character in randomly-selected words, up to num times or with a probability of num.

Parameters
* aug_toks — Sequence of tokens to augment through character deletion.

* num — If int, maximum number of words to modify with a random character deletion; if
float, probability that a given word will be modified.

Returns New, augmented sequence of tokens.

class textacy.augmentation.utils.AugTok (text, ws, pos, is_word, syns)
tuple: Minimal token data required for data augmentation transforms.

is_word

Alias for field number 3
pos

Alias for field number 2

4.3. API Reference 105

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

syns
Alias for field number 4

text
Alias for field number O

ws
Alias for field number 1

textacy.augmentation.utils.to_aug_toks (spacy_obj: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span]) —

List[textacy.augmentation.utils.AugTok]
Transform a spaCy Doc or Span into a list of AugTok objects, suitable for use in data augmentation transform

functions.

textacy.augmentation.utils.get_char_weights (lang: str) — List[Tuple[str, int]]
Get lang-specific character weights for use in certain data augmentation transforms, based on texts in
textacy.datasets.UDHR.

Parameters lang — Standard two-letter language code.

Returns Collection of (character, weight) pairs, based on the distribution of characters found in the
source text.

4.3.11 Utilities

lang_ utils.identify_lang Identify the most probable language identified in text.

text_utils.is_acronym Pass single token as a string, return True/False if is/is
not valid acronym.

text_utils.keyword in_context Search for keyword in text via regular expression,

return or print strings spanning window_width char-
acters before and after each occurrence of keyword.
text_utils.KWIC Alias of keyword _in_context.
text_utils.clean_terms Clean up a sequence of single- or multi-word strings:
strip leading/trailing junk chars, handle dangling parens
and odd hyphenation, etc.

utils.get_config Get key configuration info about dev environment: OS,
python, spacy, and textacy.

utils.print_markdown Print i tems as a markdown-formatted list.

utils.is_record Check whether ob 7 is a “record” — that is, a (text, meta-
data) 2-tuple.

utils.to_collection Validate and cast a value or values to a collection.

utils.to_bytes Coerce string s to bytes.

utils.to_unicode Coerce string s to unicode.

utils.to_path Coerce pathtoapathlib.Path.

utils.validate_set_members Validate values that must be of a certain type and (op-
tionally) found among a set of known valid values.

utils.validate_and clip range Validate and clip range values.

106 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

Language Identification

Pipeline for identifying the language of a text, using a model inspired by Google’s Compact Language Detector v3
(https://github.com/google/cld3) and implemented with scikit-learn>=0.20.

Model

Character unigrams, bigrams, and trigrams are extracted from input text, and their frequencies of occurence within
the text are counted. The full set of ngrams are then hashed into a 4096-dimensional feature vector with values given
by the L2 norm of the counts. These features are passed into a Multi-layer Perceptron with a single hidden layer of
512 rectified linear units and a softmax output layer giving probabilities for ~140 different languages as ISO 639-1
language codes.

Technically, the model was implemented as a sklearn.pipeline.Pipeline with two steps: a sklearn.
feature_extraction.text.HashingVectorizer for vectorizing input texts and a sklearn.
neural_network.MLPClassifier for multi-class language classification.

Dataset

The pipeline was trained on a randomized, stratified subset of ~750k texts drawn from several sources:

» Tatoeba: A crowd-sourced collection of sentences and their translations into many languages. Style is rela-
tively informal; subject matter is a variety of everyday things and goings-on. Source: https://tatoeba.org/eng/
downloads.

* Leipzig Corpora: A collection of corpora for many languages pulling from comparable sources — specifically,
10k Wikipedia articles from official database dumps and 10k news articles from either RSS feeds or web scrapes,
when available. Style is relatively formal; subject matter is a variety of notable things and goings-on. Source:
http://wortschatz.uni-leipzig.de/en/download

* UDHR: The UN’s Universal Declaration of Human Rights document, translated into hundreds of languages and
split into paragraphs. Style is formal; subject matter is fundamental human rights to be universally protected.
Source: https://unicode.org/udhr/index.html

* Twitter: A collection of tweets in each of ~70 languages, posted in July 2014, with languages as-
signed through a combination of models and human annotators. Style is informal; subject matter is what-
ever Twitter was going on about back then. Source: https://blog.twitter.com/engineering/en_us/a/2015/
evaluating-language-identification-performance.html

* DSLCC: Two collections of short excerpts of journalistic texts in a handful of language groups that are highly
similar to each other. Style is relatively formal; subject matter is current events. Source: http://ttg.uni-saarland.
de/resources/DSLCC/

Performance

The trained model achieved F1 = 0.96 when (macro and micro) averaged over all languages. A few languages have
worse performance; for example, the two Norwegians (“nb” and “no”), Bosnian (“bs”) and Serbian (“sr”’), and Bashkir
(“ba”) and Tatar (“tt”) are often confused with each other. See the textacy-data releases for more details: https:
//github.com/bdewilde/textacy-data/releases/tag/lang_identifier_v1.1_sklearn_v21

class textacy.lang_utils.LanglIdentifier (data_dir=PosixPath(/home/docs/checkouts/readthedocs.org/user_builds/te:
packages/textacy/data/lang_identifier'),
max_text_len=1000)

Parameters

4.3. API Reference 107

https://github.com/google/cld3
https://tatoeba.org/eng/downloads
https://tatoeba.org/eng/downloads
http://wortschatz.uni-leipzig.de/en/download
https://unicode.org/udhr/index.html
https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.html
https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.html
http://ttg.uni-saarland.de/resources/DSLCC/
http://ttg.uni-saarland.de/resources/DSLCC/
https://github.com/bdewilde/textacy-data/releases/tag/lang_identifier_v1.1_sklearn_v21
https://github.com/bdewilde/textacy-data/releases/tag/lang_identifier_v1.1_sklearn_v21

textacy Documentation, Release 0.10.1

e data_dir (str)-—
e max_text_len (int)-—
pipeline
Type sklearn.pipeline.Pipeline

download (force=False)
Download the pipeline data as a Python version-specific compressed pickle file and save it to disk under
the LangIdentifier.data_dir directory.

Parameters force (bool) — If True, download the dataset, even if it already exists on disk
under data_dir.

identify_lang (fext)
Identify the most probable language identified in text.

Parameters text (str)-—
Returns 2-letter language code of the most probable language.
Return type str

identify topn_1langs (fext, topn=3)
Identify the t opn most probable languages identified in text.

Parameters

e text (str)—

* topn (int)—
Returns 2-letter language code and its probability for the t opn most probable languages.
Return type List[Tuple[str, float]]

init_pipeline ()
Initialize a new language identification pipeline, overwriting any pre-trained pipeline loaded from disk
under LangIdentifier.data_dir. Must be trained on (text, lang) examples before use.

textacy.lang_utils.identify_lang (text)
Identify the most probable language identified in text.

Parameters text (str)-—
Returns 2-letter language code of the most probable language.

Return type str

Other Utils

textacy.text_utils: Setof small utility functions that take text strings as input.

textacy.text_utils.is_acronym (token: str, exclude: Optional[Set[str]] = None) — bool
Pass single token as a string, return True/False if is/is not valid acronym.

Parameters
* token - Single word to check for acronym-ness

* exclude — If technically valid but not actual acronyms are known in advance, pass them
in as a set of strings; matching tokens will return False.

Returns Whether or not t oken is an acronym.

108 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.10.1

textacy.text_utils.keyword_in_context (text: str, keyword: str, *, ignore_case: bool = True,
window_width: int = 50, print_only: bool = True) —

Optional[Iterable[Tuple[str, str, str]]]
Search for keyword in text via regular expression, return or print strings spanning window_width char-

acters before and after each occurrence of keyword.
Parameters
¢ text — Text in which to search for keyword.

* keyword — Technically, any valid regular expression string should work, but usually this

is a single word or short phrase: “spam”, “spam and eggs”; to account for variations, use
regex: “[Ss]pam (andl&) [Eelggs?”

Note: If keyword contains special characters, be sure to escape them!

* ignore_case - If True, ignore letter case in keyword matching.

e window_width — Number of characters on either side of keyword to include as “con-
text”.

* print_only — If True, print out all results with nice formatting; if False, return all (pre,
kw, post) matches as generator of raw strings.

Yields Next 3-tuple of prior context, the match itself, and posterior context.

textacy.text_utils.KWIC (text: str, keyword: str, *, ignore_case: bool = True, window_width: int =
50, print_only: bool = True) — Optional[lterable[Tuple[str, str, str]]]
Alias of keyword in_context.

textacy.text_utils.clean_terms (ferms: Iterable[str]) — Iterable[str]
Clean up a sequence of single- or multi-word strings: strip leading/trailing junk chars, handle dangling parens
and odd hyphenation, etc.

9 <

Parameters terms — Sequence of terms such as “presidency”, “epic failure”, or “George W. Bush”
that may be _unclean_ for whatever reason.

Yields Next term in zerms but with the cruft cleaned up, excluding terms that were _entirely_ cruft

Warning: Terms with (intentionally) unusual punctuation may get “cleaned” into a form that changes or
obscures the original meaning of the term.

textacy.utils.deprecated (message: str, *, action: str = 'always')
Show a deprecation warning, optionally filtered.

Parameters
* message — Message to display with DeprecationWarning.

* action - Filter controlling whether warning is ignored, displayed, or turned into an error.
For reference:

See also:
https://docs.python.org/3/library/warnings.html#the- warnings-filter

textacy.utils.get_config () — Dict[str, Any]
Get key configuration info about dev environment: OS, python, spacy, and textacy.

Returns dict

4.3. API Reference 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/warnings.html#the-warnings-filter
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

textacy.utils.print_markdown (items: Union[Dict[Any, Any], Iterable[Tuple[Any, Any]]])
Print items as a markdown-formatted list. Specifically useful when submitting config info on GitHub issues.

Parameters items —

textacy.utils.is_record (0bj: Any) — bool
Check whether ob j is a “record” — that is, a (text, metadata) 2-tuple.

textacy.utils.to_collection (val: Any, val_type: Union[Type[Any], Tuple[Type[Any], ...]],

col_type: Type[Any]) — Optional[Collection[Any]]
Validate and cast a value or values to a collection.

Parameters

* val (object)— Value or values to validate and cast.

* val_type (type) — Type of each value in collection, e.g. int or str.

* col_type (type) — Type of collection to return, e.g. tuple or set.
Returns Collection of type col_type with values all of type val_type.
Raises TypeError —

textacy.utils.to_bytes (s: Union[str, bytes], *, encoding: str = 'utf-8', errors: str = 'strict') — bytes
Coerce string s to bytes.

textacy.utils.to_unicode (s: Union[str, bytes], *, encoding: str = 'utf-8', errors: str = 'strict') — str
Coerce string s to unicode.

textacy.utils.to_path (path: Union[str, pathlib.Path]) — pathlib.Path
Coerce pathtoapathlib.Path.

Parameters path -
Returns pathlib.Path

textacy.utils.validate_set_members (vals: Union[Any, Set[Any]], val_type: Union[Type[Any],
Tuple[Type[Any], ...]], valid_vals: Optional[Set[Any]] =
None) — Set[Any]
Validate values that must be of a certain type and (optionally) found among a set of known valid values.

Parameters
* vals — Value or values to validate.
* val_type — Type(s) of which all vals must be instances.
e valid_vals — Set of valid values in which all vals must be found.
Returns Validated values.
Return type Set[obj]
Raises
e TypeError —
* ValueError —

textacy.utils.validate_and_clip_range (range_vals: Tuple[Any, Any], full_range: Tuple[Any,
Any], val_type: Optional[Union[Type[Any], Tu-

ple[Type[Any], ...]]] = None) — Tuple[Any, Any]
Validate and clip range values.

Parameters

110 Chapter 4. contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.10.1

* range_vals — Range values, i.e. [start_val, end_val), to validate and, if necessary, clip.
If None, the value is set to the corresponding value in full_range.

e full_range —Full range of values, i.e. [min_val, max_val), within which range_vals
must lie.

* val_type — Type(s) of which all range_vals must be instances, unless val is None.

Returns Range for which null or too-small/large values have been clipped to the min/max valid
values.

Raises
e TypeError —
e ValueError —

textacy.utils.get_kwargs_for_ func (func: Callable, kwargs: Dict[str, Any]) — Dict[str, Any]
Get the set of keyword arguments from kwargs that are used by func. Useful when calling a func from
another func and inferring its signature from provided % xkwargs.

Functionality for caching language data and other NLP resources. Loading data from disk can be slow; let’s just do it
once and forget about it. :)

textacy.cache.LRU_CACHE = LRUCache([], maxsize=2147483648, currsize=0)
Least Recently Used (LRU) cache for loaded data.

The max cache size may be set by the TEXTACY_MAX_CACHE_SIZE environment variable, where the value
must be an integer (in bytes). Otherwise, the max size is 2GB.

Type cachetools.LRUCache

textacy.cache.clear ()
Clear textacy’s cache of loaded data.

4.3.12 Miscellany

Text Statistics

api.TextStats Class to compute a variety of basic and readability
statistics for a given doc, where each stat is a lazily-
computed attribute.

basics.n_sents Compute the number of sentences in a document.

basics.n_words Compute the number of words in a document.

basics.n _unique_words Compute the number of unique words in a document.

basics.n_chars_per_word Compute the number of characters for each word in a
document.

basics.n_chars Compute the total number of characters in a document.

basics.n_long _words Compute the number of long words in a document.

basics.n_syllables_per_ _word Compute the number of syllables for each word in a doc-
ument.

basics.n_syllables Compute the total number of syllables in a document.

basics.n_monosyllable words Compute the number of monosyllobic words in a docu-
ment.

basics.n_polysyllable words Compute the number of polysyllobic words in a docu-
ment.

basics.entropy Compute the entropy of words in a document.

continues on next page

4.3. API Reference 111

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

Table 10 — continued from previous page

readability.automated_readability indexReadability test for English-language texts, particularly
for technical writing, whose value estimates the U.S.

readability.automatic_arabic_readabilitReadabiity test for Arabic-language texts based on
number of characters and average word and sentence
lengths.

readability.coleman_liau_index Readability test whose value estimates the number of
years of education required to understand a text, sim-
ilar to flesch_kincaid_grade_level () and
smog_index (), but using characters per word in-
stead of syllables.

readability.flesch _kincaid grade_level Readability test used widely in education, whose value
estimates the U.S.

readability.flesch_reading_ease Readability test used as a general-purpose standard in
several languages, based on a weighted combination of
avg.

readability.gulpease_index Readability test for Italian-language texts,

whose value is in the range [0, 100] similar to
flesch_reading_ease().

readability.gunning fog_index Readability test whose value estimates the number of
years of education required to understand a text, sim-
ilar to flesch_kincaid_grade_level () and
smog_index ().

readability.lix Readability test commonly used in Sweden on both
English- and non-English-language texts, whose value
estimates the difficulty of reading a foreign text.

readability.mu legibility index Readability test for Spanish-language texts based on
number of words and the mean and variance of their
lengths in characters, whose value is in the range [O,
100].

readability.perspicuity_index Readability test for Spanish-language texts,
whose value is in the range [0, 100]; very
similar to the Spanish-specific formulation of
flesch_reading_ease (), but included ad-
ditionally since it’s become a common readability
standard.

readability.smog_index Readability test commonly used in medical
writing and the healthcare industry, whose
value estimates the number of years of edu-
cation required to understand a text similar to
flesch_kincaid_grade_level () and in-
tended as a substitute for gunning_fog_index ().

readability.wiener_sachtextformel Readability test for German-language texts, whose
value estimates the grade level required to understand
a text.

textacy.text_stats.api: Compute various basic counts and readability statistics for documents.

class textacy.text_stats.api.TextStats (doc: spacy.tokens.doc.Doc)
Class to compute a variety of basic and readability statistics for a given doc, where each stat is a lazily-computed
attribute.

>>> text = next (textacy.datasets.CapitolWords () .texts (limit=1))

(continues on next page)

112 Chapter 4. contents

textacy Documentation, Release 0.10.1

(continued from previous page)

>>> doc = textacy.make_spacy_doc (text)
>>> ts = textacy.text_stats.TextStats (doc)
>>> ts.n_words

136

>>> ts.n_unique_words

80

>>> ts.entropy

6.00420319027642

>>> ts.flesch_kincaid_grade_level
11.817647058823532

>>> ts.flesch_reading_ease
50.707745098039254

Some stats vary by language or are designed for use with specific languages:

>>> text = (
"Muchos afios después, frente al pelotdn de fusilamiento,
"el coronel Aureliano Buendia habia de recordar aquella tarde remota

"en que su padre lo llevd a conocer el hielo."
L)
>>> doc = textacy.make_spacy_doc (text, lang="es")
>>> ts = textacy.text_stats.TextStats (doc)
>>> ts.n_words
28
>>> ts.perspicuity_index
56.46000000000002
>>> ts.mu_legibility_index
71.18644067796609

Each of these stats have stand-alone functions in textacy.text_stats.basics and textacy.
text_stats.readability with more detailed info and links in the docstrings — when in doubt, read
the docs!

Parameters doc — A text document tokenized and (optionally) sentence-segmented by spaCy.

property n_sents
Number of sentences in document.

See also:
textacy.text_stats.basics.n_sents ()

property n_words
Number of words in document.

See also:
textacy.text_stats.basics.n_words ()

property n_unique_words
Number of unigue words in document.

See also:
textacy.text_stats.basics.n_unique_words ()

property n_long_words
Number of long words in document.

See also:

4.3. API Reference 113

textacy Documentation, Release 0.10.1

textacy.text_stats.basics.n_long_words ()

property n_chars_per_word
Number of characters for each word in document.

See also:
textacy.text_stats.basics.n_chars_per._word()

property n_chars
Total number of characters in document.

See also:
textacy.text_stats.basics.n_chars()

property n_syllables_per_word
Number of syllables for each word in document.

See also:
textacy.text_stats.basics.n_syllables per_word()

property n_syllables
Total number of syllables in document.

See also:
textacy.text_stats.basics.n_syllables ()

property n_monosyllable_ words
Number of monosyllobic words in document.

See also:
textacy.text_stats.basics.n_monosyllable words ()

property n_polysyllable words
Number of polysyllobic words in document.

See also:
textacy.text_stats.basics.n_polysyllable words()

property entropy
Entropy of words in document.

See also:
textacy.text_stats.basics.entropy ()

property automated readability_ index
Readability test for English-language texts. Higher value => more difficult text.

See also:
textacy.text_stats.readability.automated readability_index/()

property automatic_arabic_readability index
Readability test for Arabic-language texts. Higher value => more difficult text.

See also:
textacy.text_stats.readability.automatic_arabic_readability_ index ()

property coleman_liau index
Readability test, not language-specific. Higher value => more difficult text.

114

Chapter 4. contents

textacy Documentation, Release 0.10.1

See also:
textacy.text_stats.readability.coleman_liau_index ()

property flesch_kincaid grade_level
Readability test, not language-specific. Higher value => more difficult text.

See also:
textacy.text_stats.readability.flesch_kincaid_grade level ()

property flesch reading_ ease
Readability test with several language-specific formulations. Higher value => easier text.

See also:
textacy.text_stats.readability.flesch_reading_ease ()

property gulpease_index
Readability test for Italian-language texts. Higher value => easier text.

See also:
textacy.text_stats.readability.qgulpease_index ()

property gunning fog index
Readability test, not language-specific. Higher value => more difficult text.

See also:
textacy.text_stats.readability.qgunning_fog_index ()

property lix
Readability test for both English- and non-English-language texts. Higher value => more difficult text.

See also:
textacy.text_stats.readability.lix()

property mu_legibility index
Readability test for Spanish-language texts. Higher value => easier text.

See also:
textacy.text_stats.readability.mu_legibility index()

property perspicuity_ index
Readability test for Spanish-language texts. Higher value => easier text.

See also:
textacy.text_stats.readability.perspicuity_ index ()

property smog_index
Readability test, not language-specific. Higher value => more difficult text.

See also:
textacy.text_stats.readability.smog_index ()

property wiener_sachtextformel
Readability test for German-language texts. Higher value => more difficult text.

See also:

textacy.text_stats.readability.wiener._sachtextformel ()

. API Reference 115

textacy Documentation, Release 0.10.1

textacy.text_stats.api.load_hyphenator (lang: str)
Load an object that hyphenates words at valid points, as used in LaTex typesetting.

Parameters lang — Standard 2-letter language abbreviation. To get a list of valid values:

>>> import pyphen; pyphen.LANGUAGES

Returns pyphen.Pyphen ()
textacy.text_stats.basics: Functions for computing basic text statistics.

textacy.text_stats.basics.n_words (doc_or_words: Union[spacy.tokens.doc.Doc, Iter-

able[spacy.tokens.token.Token]]) — int
Compute the number of words in a document.

Parameters doc_or_words — If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all are included as-is.

textacy.text_stats.basics.n_unique_words (doc_or_words: Union[spacy.tokens.doc.Doc, It-

erable[spacy.tokens.token.Token]]) — int
Compute the number of unique words in a document.

Parameters doc_or_words — If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all are included as-is.

textacy.text_stats.basics.n_chars_per_word (doc_or_words: Union[spacy.tokens.doc.Doc,
Iterable[spacy.tokens.token.Token]]) — Tu-
ple[int, ...]
Compute the number of characters for each word in a document.

Parameters doc_or_words — If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all are included as-is.

textacy.text_stats.basics.n_chars (n_chars_per_word: Tuple[int, ...]) — int
Compute the total number of characters in a document.

Parameters n_chars_per_word — Number of characters per word in a given document, as com-
puted by n_chars_per_word().

textacy.text_stats.basics.n_long_words (n_chars_per_word: Tuple[int, ...], min_n_chars:
int=7) —int
Compute the number of long words in a document.
Parameters

* n_chars_per_word— Number of characters per word in a given document, as computed
by n_chars_per_word().

* min_n_chars — Minimum number of characters required for a word to be considered
“long9’.

textacy.text_stats.basics.n_syllables_per_word (doc_or_words:
Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], lang:
str) — Tuple[int, ...]
Compute the number of syllables for each word in a document.

Parameters doc_or_words — If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all are included as-is.

Note: Identifying syllables is _tricky_; this method relies on hyphenation, which is more straightforward but
doesn’t always give the correct number of syllables. While all hyphenation points fall on syllable divisions, not

116 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.10.1

all syllable divisions are valid hyphenation points.

textacy.text_stats.basics.n_syllables (n_syllables_per_word: Tuple[int, ...]) — int
Compute the total number of syllables in a document.

Parameters n_syllables_per_word — Number of syllables per word in a given document, as
computed by n_syllables _per_word().

textacy.text_stats.basics.n_monosyllable_words (n_syllables_per_word: Tuple[int, ...])
— int
Compute the number of monosyllobic words in a document.
Parameters n_syllables_per_ word — Number of syllables per word in a given document, as
computed by n_syllables per_word().

textacy.text_stats.basics.n_polysyllable_words (n_syllables_per word: Tuple[int, ...],

min_n_syllables: int = 3) — int
Compute the number of polysyllobic words in a document.

Parameters

* n_syllables_per_word - Number of syllables per word in a given document, as com-
putedby n_syllables per word().

* min_n_syllables — Minimum number of syllables required for a word to be considered
“polysyllobic”.

textacy.text_stats.basics.n_sents (doc: spacy.tokens.doc.Doc) — int
Compute the number of sentences in a document.

Warning: If doc has not been segmented into sentences, it will be modified in-place using spaCy’s rule-
based Sentencizer pipeline component before counting.

textacy.text_stats.basics.entropy (doc_or_words: Union[spacy.tokens.doc.Doc, Iter-

able[spacy.tokens.token.Token]]) — float
Compute the entropy of words in a document.

Parameters doc_or_words — If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all are included as-is.

textacy.text_stats.readability: Functions for computing various measures of text “readability”.

textacy.text_stats.readability.automated_readability index (n_chars: int, n_words:
int, n_sents: int) —

Readability test for English-language texts, particularly for technical vg?i(tlitng, whose value es-
timates the U.S. grade level required to understand a text. Similar to several other tests
(e.g. flesch_kincaid grade_level ()), but uses characters per word instead of syllables like
coleman_liau_index (). Higher value => more difficult text.

4.3. API Reference 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

References

https://en.wikipedia.org/wiki/Automated_readability_index

textacy.text_stats.readability.automatic_arabic_readability_ index (n_chars:
nt,
n_words:
int, n_sents:

int) — float
Readability test for Arabic-language texts based on number of characters and average word and sentence lengths.

Higher value => more difficult text.

References

Al Tamimi, Abdel Karim, et al. “AARI: automatic arabic readability index.” Int. Arab J. Inf. Technol. 11.4
(2014): 370-378.

textacy.text_stats.readability.coleman_liau_index (n_chars: int, n_words: int, n_sents:

int) — float
Readability test whose value estimates the number of years of education required to understand a text, similar

to flesch _kincaid grade_level () and smog_index (), but using characters per word instead of
syllables. Higher value => more difficult text.

References

https://en.wikipedia.org/wiki/Coleman%E2%80%93Liau_index

textacy.text_stats.readability.flesch_kincaid_grade_level (n_syllables: int,
n_words: int, n_sents:

int) — float
Readability test used widely in education, whose value estimates the U.S. grade level / number of years of

education required to understand a text. Higher value => more difficult text.

References

https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch.E2.80.93Kincaid_grade_
level

textacy.text_stats.readability.flesch_reading_ ease (n_syllables: int, n_words: int,
n_sents: int, * lang: Optional[str]

= None) — float
Readability test used as a general-purpose standard in several languages, based on a weighted combination of

avg. sentence length and avg. word length. Values usually fall in the range [0, 100], but may be arbitrarily
negative in extreme cases. Higher value => easier text.

Note: Coefficients in this formula are language-dependent; if 1ang is null, the English-language formulation
is used.

118 Chapter 4. contents

https://en.wikipedia.org/wiki/Automated_readability_index
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Coleman%E2%80%93Liau_index
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch.E2.80.93Kincaid_grade_level
https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch.E2.80.93Kincaid_grade_level
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

References

English: https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch_reading_ease
German: https://de.wikipedia.org/wiki/Lesbarkeitsindex#Flesch-Reading-Ease ~ Spanish: Fernandez-
Huerta formulation French: ? Italian: https://it.wikipedia.org/wiki/Formula_di_Flesch Dutch: ? Por-
tuguese: https://pt.wikipedia.org/wiki/Legibilidade_de_Flesch Turkish: Atesman formulation Russian:
https://ru.wikipedia.org/wiki/%D0%98 % D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%
B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%
D1%81%D1%82%D0%B8

textacy.text_stats.readability.gulpease_index (n_chars: int, n_words: int, n_sents: int)

— float
Readability test for Italian-language texts, whose value is in the range [0, 100] similar to
flesch_reading ease (). Higher value => easier text.

References

https://it.wikipedia.org/wiki/Indice_Gulpease

textacy.text_stats.readability.gunning_fog_index (n_words: int, n_polysyllable_words:

int, n_sents: int) — float
Readability test whose value estimates the number of years of education required to understand a text, similar

to flesch _kincaid grade_level () and smog_index (). Higher value => more difficult text.

References

https://en.wikipedia.org/wiki/Gunning_fog_index

textacy.text_stats.readability.lix (n_words: int, n_long_words: int, n_sents: int) — float
Readability test commonly used in Sweden on both English- and non-English-language texts, whose value
estimates the difficulty of reading a foreign text. Higher value => more difficult text.

References

https://en.wikipedia.org/wiki/Lix_(readability_test)

textacy.text_stats.readability.mu_legibility_ index (n_chars_per_word: Collec-

tion[int]) — float
Readability test for Spanish-language texts based on number of words and the mean and variance of their lengths

in characters, whose value is in the range [0, 100]. Higher value => easier text.

References

Muiioz, M., and J. Muiioz. “Legibilidad Mp.” Vifia del Mar: CHL (2006).

textacy.text_stats.readability.perspicuity_index (n_syllables: int, n_words: int,

n_sents: int) — float
Readability test for Spanish-language texts, whose value is in the range [0, 100]; very similar to the Spanish-

specific formulation of flesch reading ease (), but included additionally since it’s become a common
readability standard. Higher value => easier text.

4.3. API Reference 119

https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch_reading_ease
https://de.wikipedia.org/wiki/Lesbarkeitsindex#Flesch-Reading-Ease
https://it.wikipedia.org/wiki/Formula_di_Flesch
https://pt.wikipedia.org/wiki/Legibilidade_de_Flesch
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://it.wikipedia.org/wiki/Indice_Gulpease
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Gunning_fog_index
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Lix_(readability_test
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

References

Pazos, Francisco Szigriszt. Sistemas predictivos de legibilidad del mensaje escrito: férmula de perspicuidad.
Universidad Complutense de Madrid, Servicio de Reprografia, 1993.

textacy.text_stats.readability.smog_index (n_polysyllable_words: int, n_sents: int) —

float
Readability test commonly used in medical writing and the healthcare industry, whose value estimates the num-
ber of years of education required to understand a text similar to f1esch _kincaid _grade_ level () and
intended as a substitute for gunning_fog_index (). Higher value => more difficult text.

References

https://en.wikipedia.org/wiki/SMOG

textacy.text_stats.readability.wiener_sachtextformel (n_words: nt,
n_polysyllable_words: int,
n_monosyllable_words: int,

n_long_words: int, n_sents:

int, *, variant: int = 1) — float
Readability test for German-language texts, whose value estimates the grade level required to understand a text.

Higher value => more difficult text.

References

https://de.wikipedia.org/wiki/Lesbarkeitsindex#Wiener_Sachtextformel

Similarity
word_movers Measure the semantic similarity between two docu-
ments using Word Movers Distance.
word2vec Measure the semantic similarity between one spacy

Doc, Span, Token, or Lexeme and another like object
using the cosine distance between the objects’ (average)
word2vec vectors.

jaccard Measure the similarity between two strings or sequences
of strings using Jaccard distance, with optional fuzzy
matching of not-identical pairs when obj1 and obj2
are sequences of strings.

levenshtein Measure the similarity between two strings using Lev-
enshtein distance, which gives the minimum number of
character insertions, deletions, and substitutions needed
to change one string into the other.

token_sort_ratio Measure the similarity between two strings based on
levenshtein (), only with non-alphanumeric char-
acters removed and the ordering of words in each string
sorted before comparison.

character_ngrams Measure the similarity between two strings using a
character ngrams similarity metric, in which strings
are transformed into trigrams of alnum-only characters,
vectorized and weighted by tf-idf, then compared by co-
sine similarity.

120 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/SMOG
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://de.wikipedia.org/wiki/Lesbarkeitsindex#Wiener_Sachtextformel

textacy Documentation, Release 0.10.1

textacy.similarity: Collection of semantic + lexical similarity metrics between tokens, strings, and sequences
thereof, returning values between 0.0 (totally dissimilar) and 1.0 (totally similar).

textacy.similarity.word_movers (docl: spacy.tokens.doc.Doc, doc2: spacy.tokens.doc.Doc, met-

o ric: str = 'cosine') — float)
Measure the semantic similarity between two documents using Word Movers Distance.

Parameters
* docl -
* doc2 -
* metric({"cosine", "euclidean", "11", "12", "manhattan"})-

Returns Similarity between docl and doc?2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar documents.

References

* Ofir Pele and Michael Werman, “A linear time histogram metric for improved SIFT matching,” in Com-
puter Vision - ECCV 2008, Marseille, France, 2008.

¢ Ofir Pele and Michael Werman, “Fast and robust earth mover’s distances,” in Proc. 2009 IEEE 12th Int.
Conf. on Computer Vision, Kyoto, Japan, 2009.

* Kusner, Matt J., et al. “From word embeddings to document distances.” Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML 2015). 2015. http://jmlr.org/proceedings/papers/v37/
kusnerb15.pdf

textacy.similarity.word2vec (objl: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span,
spacy.tokens.token.Token], obj2: Union[spacy.tokens.doc.Doc,

spacy.tokens.span.Span, spacy.tokens.token.Token]) — float
Measure the semantic similarity between one spacy Doc, Span, Token, or Lexeme and another like object using

the cosine distance between the objects’ (average) word2vec vectors.
Parameters
* objl -
* obj2 -

Returns Similarity between obj1 and obj2 in the interval [0.0, 1.0], where larger values correspond to more
similar objects

textacy.similarity.jaccard (objl: Union[str, Sequence[str]], obj2: Union[str, Sequence[str]],

fuzzy_match: bool = False, match_threshold: float = 0.8) — float
Measure the similarity between two strings or sequences of strings using Jaccard distance, with optional fuzzy

matching of not-identical pairs when obj1 and ob7j2 are sequences of strings.
Parameters
* objl -

* ob3j2 - If str, both inputs are treated as sequences of characters, in which case fuzzy match-
ing is not permitted

* fuzzy_ match - If True, allow for fuzzy matching in addition to the usual identical match-
ing of pairs between input vectors

* match_threshold - Value in the interval [0.0, 1.0]; fuzzy comparisons with a score >=
this value will be considered matches

4.3. API Reference 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

Returns Similarity between obj1 and ob3j2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings or sequences of strings

Raises
* ValueError —if fuzzy_match is True but obj1 and obj2 are strings,
e or if match threshold is not a wvalid float -

textacy.similarity.levenshtein (strl: str, str2: str) — float
Measure the similarity between two strings using Levenshtein distance, which gives the minimum number of
character insertions, deletions, and substitutions needed to change one string into the other.

Parameters
e strl -
e str2 -

Returns Similarity between strl and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings

textacy.similarity.token_sort_ratio (stri: str, str2: str) — float
Measure the similarity between two strings based on levenshtein (), only with non-alphanumeric charac-
ters removed and the ordering of words in each string sorted before comparison.

Parameters
e strl —
e str2 -

Returns Similarity between strl and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings.

textacy.similarity.character_ngrams (strl: str, str2: str) — float
Measure the similarity between two strings using a character ngrams similarity metric, in which strings are
transformed into trigrams of alnum-only characters, vectorized and weighted by tf-idf, then compared by cosine

similarity.
Parameters
* strl -
* str2 -

Returns Similarity between strl and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings

Note: This method has been used in cross-lingual plagiarism detection and authorship attribution, and seems to
work better on longer texts. At the very least, it is slow on shorter texts relative to the other similarity measures.

122 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.10.1

Semantic Networks

textacy.network: Represent documents as semantic networks, where nodes are individual terms or whole sen-
tences and edges are weighted by the strength of their co-occurrence or similarity, respectively.

textacy.network.terms_to_semantic_network (terms: Union[Sequence/str], Se-
quence[spacy.tokens.token.Token]],
* normalize: Union/str, bool,
Callable[[spacy.tokens.token.Token], str]]
= 'lemma’, window_width: int = 10,
edge_weighting: str = 'cooc_freq') — net-

workx.classes.graph.Graph
Transform an ordered list of non-overlapping terms into a semantic network, where each term is represented by

a node with weighted edges linking it to other terms that co-occur within window_width terms of itself.
Parameters
* terms -

* normalize - If “lemma”, lemmatize terms; if “lower”, lowercase terms; if falsy, use the
form of terms as they appear in terms; if a callable, must accept a Token and return a str,
e.g. textacy.spacier.utils.get_normalized text ().

Note: This is applied to the elements of terms only if it’s a list of Token.

* window_width — Size of sliding window over terms that determines which are said to
co-occur. If 2, only immediately adjacent terms have edges in the returned network.

* edge_weighting - If ‘cooc_freq’, the nodes for all co-occurring terms are connected by
edges with weight equal to the number of times they co-occurred within a sliding window;
if ‘binary’, all such edges have weight = 1.

Returns Networkx graph whose nodes represent individual terms, connected by edges based on term
co-occurrence with weights determined by edge_weighting.

Note:

* Be sure to filter out stopwords, punctuation, certain parts of speech, etc. from the terms list before passing
it to this function

* Multi-word terms, such as named entities and compound nouns, must be merged into single strings or
Token s beforehand

* If terms are already strings, be sure to have normalized them so that like terms are counted together; for
example, by applying textacy. spacier.utils.get_normalized text ()

textacy.network.sents_to_semantic_network (sents: Union[Sequence[str], Se-
quence[spacy.tokens.span.Span]],
* normalize: Union[str, bool,
Callable[[spacy.tokens.token.Token], str]]

= 'lemma’, edge_weighting: str = 'cosine') —
networkx.classes.graph.Graph
Transform a list of sentences into a semantic network, where each sentence is represented by a node with edges

linking it to other sentences weighted by the (cosine or jaccard) similarity of their constituent words.
Parameters

* sents -

4.3. API Reference 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.10.1

e normalize — If ‘lemma’, lemmatize words in sents; if ‘lower’, lowercase words in
sents; if false-y, use the form of words as they appear in sents; if a callable, must ac-
cept a spacy.tokens.Token and return a str, e.g. textacy.spacier.utils.
get_normalized text ().

Note: This is applied to the elements of sents only if it’s a list of Span s.

* edge_weighting — Similarity metric to use for weighting edges between sentences. If
‘cosine’, use the cosine similarity between sentences represented as tf-idf word vectors; if
‘jaccard’, use the set intersection divided by the set union of all words in a given sentence
pair.

Returns Networkx graph whose nodes are the integer indexes of the sentences in sents, not
the actual text of the sentences. Edges connect every node, with weights determined by
edge_weighting.

Note:

 If passing sentences as strings, be sure to filter out stopwords, punctuation, certain parts of speech, etc.
beforehand

» Consider normalizing the strings so that like terms are counted together (see textacy.spacier.
utils.get_normalized text ())

4.4 Changes

4.4.1 0.10.1 (2020-08-29)

New and Changed:

« Expanded text statistics and refactored into a sub-package (PR #307)

— Refactored text__stats module into a sub-package with the same name and top-level API, but restruc-
tured under the hood for better consistency

— Improved performance, API, and documentation on the main Text Stats class, and improved documen-
tation on many of the individual stats functions

— Added new readability tests for texts in Arabic (Automated Arabic Readability Index), Spanish (u-legibility
and perspecuity index), and Turkish (a lang-specific formulation of Flesch Reading Ease)

— Breaking change: Removed TextStats.basic_counts and TextStats.
readability_stats attributes, since typically only one or a couple needed for a given use
case; also, some of the readability tests are language-specific, which meant bad results could get mixed in
with good ones

¢ Improved and standardized some code quality and performance (PR #305, #306)

— Standardized error messages via top-level errors . py module
— Replaced str.format () with f-strings (almost) everywhere, for performance and readability

— Fixed a whole mess of linting errors, significantly improving code quality and consistency

¢ Improved package configuration, and maintenance (PRs #298, #305, #306)

124

Chapter 4. contents

textacy Documentation, Release 0.10.1

Added automated GitHub workflows for building and testing the package, linting and formatting, publish-
ing new releases to PyPi, and building documentation (and ripped out Travis CI)

Added a makefile with common commands for dev work, plus instructions

Adopted the new pyproject . toml package configuration standard; updated and streamlined setup.
py and setup.cfg accordingly; and removed requirements.txt

Moved all source code into a / src directory, for technical reasons
— Added mypy-specific config file to reduce output noisiness when type-checking
¢ Improved and moved package documentation (PR #309)

— Moved the docs site back to ReadTheDocs (https://textacy.readthedocs.io)! Pardon the years-long detour
into GitHub Pages. . .

— Enabled markdown-based documentation using recommonmark instead of m2r, and migrated all “nar-
rative” docs from . rst to equivalent . md files

— Added auto-generated summary tables to many sections of the API Reference, to help users get an
overview of functionality and better find what they’re looking for; also added auto-generated section head-
ing references

— Tidied up and further standardized docstrings throughout the code

¢ Kept up with the Python ecosystem

Trained a v1.1 language identifier model using scikit—-learn==0.23.0, and bumped the upper
bound on that dependency’s version accordingly

Updated and parametrized many tests using modern pytest functionality (PR #306)

Got textacy versions 0.9.1 and 0.10.0 up on conda-forge (Issue #294)

Added spectral seriation as a term-ordering technique when making a “Termite” visualization by taking
advantage of pandas.DataFrame functionality, and otherwise tidied up the default for nice-looking
plots (PR #295)

Fixed:
* Corrected an incorrect and misleading reference in the quickstart docs (Issue #300, PR #302)
» Fixed a bug in the delete_words () augmentation transform (Issue #308)
Contributors:

Special thanks to @tbsexton, @marius-mather, and @rmax for their contributions!

4.4.2 0.10.0 (2020-03-01)

New:

* Added a logo to textacy’s documentation and social preview :page_with_curl:

¢ Added type hints throughout the code base, for more expressive type indicators in docstrings and for static type
checkers used by developers to code more effectively (PR #289)

* Added a preprocessing function to normalize sequences of repeating characters (Issue #275)

4.4. Changes 125

textacy Documentation, Release 0.10.1

Changed:

» Improved core Corpus functionality using recent additions to spacy (PR #285)

— Re-implemented Corpus.save () and Corpus.load () using spacy’s new DocBin class, which
resolved a few bugs/issues (Issue #254)

— Added n_process arg to Corpus.add () to set the number of parallel processes used when adding
many items to a corpus, following spacy’s updates to nlp.pipe () (Issue #277)

— Bumped minimum spaCy version from 2.0.12 => 2.2.0, accordingly
* Added handling for zero-width whitespaces into normalize_whitespace () function (Issue #278)
* Improved a couple rough spots in package administration:

— Moved package setup information into a declarative configuration file, in an attempt to keep up with
evolving best practices for Python packaging

— Simplified the configuration and interoperability of sphinx + github pages for generating package docu-
mentation

Fixed:

* Fixed typo in ConceptNet docstring (Issue #280)

¢ Trained and distributed a LangIdentifier model using scikit—-learn==0.22, to prevent ambiguous
errors when trying to load a file that didn’t exist (Issues #291, #292)

4.4.3 0.9.1 (2019-09-03)

Changed:

* Tweaked TopicModel class to work with newer versions of scikit—-learn, and updated version require-
ments accordingly from >=0.18.0,<0.21.0to>=0.19

Fixed:

* Fixed residual bugs in the script for training language identification pipelines, then trained and released one
using scikit-learn==0.19 to prevent errors for users on that version

4.4.4 0.9.0 (2019-09-03)

Note: textacy is now PY3-only! Specifically, support for PY2.7 has been dropped, and the minimum PY3 version
has been bumped to 3.6 (PR #261). See below for related changes.

126 Chapter 4. contents

textacy Documentation, Release 0.10.1

New:

¢ Added augmentation subpackage for basic text data augmentation (PR #268, #269)

— implemented several transformer functions for substituting, inserting, swapping, and deleting elements of
text at both the word- and character-level

— implemented an Augmenter class for combining multiple transforms and applying them to spaCy Docs
in a randomized but configurable manner

— Note: This API is provisional, and subject to change in future releases.
* Added resources subpackage for standardized access to linguistic resources (PR #265)

— DepecheMood++: high-coverage emotion lexicons for understanding the emotions evoked by a text. Up-
dated from a previous version, and now features better English data and Italian data with expanded, con-
sistent functionality.

removed lexicon_methods.py module with previous implementation

— ConceptNet: multilingual knowledge base for representing relationships between words, similar to Word-
Net. Currently supports getting word antonyms, hyponyms, meronyms, and synonyms in dozens of lan-
guages.

¢ Added UDHR dataset, a collection of translations of the Universal Declaration of Human Rights (PR #271)

Changed:
» Updated and extended functionality previously blocked by PY2 compatibility while reducing code bloat / com-
plexity
— made many args keyword-only, to prevent user error

— args accepting strings for directory / file paths now also accept pathlib.Path objects, with pathlib
adopted widely under the hood

— increased minimum versions and/or uncapped maximum versions of several dependencies, including
jellyfish, networkx, and numpy

* Added a Portuguese-specific formulation of Flesch Reading Ease score to text_stats (PR #263)
* Reorganized and grouped together some like functionality

— moved core functionality for loading spaCy langs and making spaCy docs into spacier.core, out of
cache.py and doc.py

— moved some general-purpose functionality from dataset.utilstoio.utilsand utils.py
— moved function for loading “hyphenator” out of cache.py and into text_stats.py, where it’s used

* Re-trained and released language identification pipelines using a better mix of training data, for slightly im-
proved performance; also added the script used to train the pipeline

* Changed API Reference docs to show items in source code rather than alphabetical order, which should make
the ordering more human-friendly

¢ Updated repo README and PyPi metadata to be more consistent and representative of current functionality

* Removed previously deprecated textacy.io.split_record_fields () function

4.4. Changes 127

textacy Documentation, Release 0.10.1

Fixed:
* Fixed aregex for cleaning up crufty terms to prevent catastrophic backtracking in certain edge cases (true story:
this bug was encountered in production code, and ruined my day)
* Fixed bad handling of edge cases in SCAKE keyterm extraction (Issue #270)

* Changed order in which URL regexes are applied in preprocessing.replace_urls () to properly han-
dle certain edge case URLs (Issue #267)

Contributors:

Thanks much to @hugoabonizio for the contribution.

4.4.5 0.8.0 (2019-07-14)

New and Changed:

* Refactored and expanded text preprocessing functionality (PR #253)

— Moved code from a top-level preprocess module into a preprocessing sub-package, and reorga-
nized it in the process

— Added new functions:

* replace_hashtags () to replace hashtags like #FollowFriday or #spacyIRL2019 with
TAG

#* replace_user_handles () to replace user handles like @bjdewilde or @spacy_io with
USER

* replace_emojis () toreplace emoji symbols like or with _EMOJI_

* normalize_ hyphenated_words () to join hyphenated words back together, like antici-
pation=>anticipation

* normalize_quotation_marks () to replace “fancy” quotation marks with simple ascii equiv-
alents, like “the god particle” =>"the god particle"

— Changed a couple functions for clarity and consistency:

replace_currency_symbols () now replaces all dedicated ascii and unicode currency sym-
bols with _CUR_, rather than just a subset thereof, and no longer provides for replacement with the
corresponding currency code (like € => EUR)

* remove_punct () now hasa fast (bool) kwarg rather than method (str)

— Removed normalize_contractions (), preprocess_text (), and fix_bad_unicode ()
functions, since they were bad/awkward and more trouble than they were worth

* Refactored and expanded keyterm extraction functionality (PR #257)

— Moved code from a top-level keyterms module into a ke sub-package, and cleaned it up / standardized
arg names / better shared functionality in the process

— Added new unsupervised keyterm extraction algorithms: YAKE (ke .yake ()), SCAKE (ke .scake ()),
and PositionRank (ke .textrank (), with non-default parameter values)

— Added new methods for selecting candidate keyterms: longest matching subsequence candidates (ke .
utils.get_longest_subsequence_candidates ()) and pattern-matching candidates (ke.
utils.get_pattern_matching_candidates())

128 Chapter 4. contents

textacy Documentation, Release 0.10.1

Improved speed of SGRank implementation, and generally optimized much of the code

* Improved document similarity functionality (PR #256)

Added a character ngram-based similarity measure (similarity.character_ngrams()), for
something that’s useful in different contexts than the other measures

Removed Jaro-Winkler string similarity measure (similarity.jaro_winkler ()), since it didn’t
add much beyond other measures

Improved speed of Token Sort Ratio implementation

Replaced python-levenshtein dependency with jellyfish, for its active development, better
documentation, and actually-compliant license

* Added customizability to certain functionality

Added options to Doc._.to_bag_of_words () and Corpus.word_counts () for filtering out
stop words, punctuation, and/or numbers (PR #249)

Allowed for objects that look like sklearn-style topic modeling classes to be passed into tm.
TopicModel () (PR #248)

Added options to customize rc params used by matplotlib when drawing a “termite” plot in viz.
draw_termite_plot () (PR #248)

* Removed deprecated functions with direct replacements: io.utils.get_filenames () and spacier.
components.merge_entities ()

Contributors:

Huge thanks to @kjoshi and @zf109 for the PRs!

4.4.6 0.7.1 (2019-06-25)

New:

* Added a default, built-in language identification classifier that’s moderately fast, moderately accurate, and covers
a relatively large number of languages [PR #247]

Implemented a Google CLD3-inspired model in scikit—-learn and trained it on ~1.5M texts in ~130
different languages spanning a wide variety of subject matter and stylistic formality; overall, speed and
performance compare favorably to other open-source options (langid, langdetect, cld2-cffi,
and c1d3)

Dropped c1d2-cffi dependency [Issue #246]

* Added extract.matches () function to extract spans from a document matching one or more pattern of
per-token (attribute, value) pairs, with optional quantity qualifiers; this is a convenient interface to spaCy’s
rule-based Matcher and a more powerful replacement for textacy’s existing (now deprecated) extract.
pos_regex_matches ()

* Added preprocess.normalize_unicode () function to transform unicode characters into their canoni-
cal forms; this is a less-intensive consolation prize for the previously-removed £ix_unicode () function

4.4. Changes 129

textacy Documentation, Release 0.10.1

Changed:

» Enabled loading blank spaCy Language pipelines (tokenization only — no model-based tagging, parsing, etc.)
via load_spacy_lang (name, allow_blank=True) for use cases that don’t rely on annotations; dis-
abled by default to avoid unwelcome surprises

* Changed inclusion/exclusion and de-duplication of entities and ngrams in to_terms_1list () [Issues #169,
#179]

— entities = True =>include entities, and drop exact duplicate ngrams
— entities = False =>don’tinclude entities, and also drop exact duplicate ngrams
— entities = None =>use ngrams as-is without checking against entities

* Moved to_collection () function from the datasets.utils module to the top-level utils module,
for use throughout the code base

e Added quotingoptionto io.read_csv () and io.write_csv (), for problematic cases

* Deprecated the spacier.components.merge_entities () pipeline component, an implementation of
which has since been added into spaCy itself

¢ Updated documentation for developer convenience and reader clarity

— Split API reference docs into related chunks, rather than having them all together in one long page, and
tidied up headers

— Fixed errors / inconsistencies in various docstrings (a never-ending struggle. . .)

— Ported package readme and changelog from . rst to .md format

Fixed:

e The Not ImplementedError previously added to preprocess.fix_unicode () is now raised rather
than returned [Issue #243]

4.4.7 0.7.0 (2019-05-13)

New and Changed:

* Removed textacy.Doc, and split its functionality into two parts

— New: Added textacy.make_spacy_doc () as a convenient and flexible entry point for making
spaCy Doc s from text or (text, metadata) pairs, with optional spaCy language pipeline specification. It’s
similar to textacy.Doc.__init__, with the exception that text and metadata are passed in together
as a 2-tuple.

— New: Added a variety of custom doc property and method extensions to the global spacy.tokens.
Doc class, accessible via its Doc ._ “underscore” property. These are similar to the properties/methods
on textacy.Doc, they just require an interstitial underscore. For example, textacy.Doc.
to_bag_of_words () =>spacy.tokens.Doc._.to_bag_of_words().

— New: Added functions for setting, getting, and removing these extensions. Note that they are set automat-
ically when textacy is imported.

* Simplified and improved performance of textacy.Corpus

130 Chapter 4. contents

textacy Documentation, Release 0.10.1

Documents are now added through a simpler API, either in Corpus.__init__ or Corpus.add();
they may be one or a stream of texts, (text, metadata) pairs, or existing spaCy Doc s. When adding many
documents, the spaCy language processing pipeline is used in a faster and more efficient way.

Saving / loading corpus data to disk is now more efficient and robust.

Note: Corpus is now a collection of spaCy Doc s rather than textacy.Docs.

» Simplified, standardized, and added Dataset functionality

New: Added an IMDB dataset, built on the classic 2011 dataset commonly used to train sentiment analysis
models.

New: Added a base Wikimedia dataset, from which a reworked Wikipedia dataset and a separate
Wikinews dataset inherit. The underlying data source has changed, from XML db dumps of raw wiki
markup to JSON db dumps of (relatively) clean text and metadata; now, the code is simpler, faster, and
totally language-agnostic.

Dataset.records () now streams (text, metadata) pairs rather than a dict containing both text and
metadata, so users don’t need to know field names and split them into separate streams before creating
Doc or Corpus objects from the data.

Filtering and limiting the number of texts/records produced is now clearer and more consistent between
.texts () and . records () methods on a given Dataset — and more performant!

Downloading datasets now always shows progress bars and saves to the same file names. When appropri-
ate, downloaded archive files” contents are automatically extracted for easy inspection.

Common functionality (such as validating filter values) is now standardized and consolidated in the
datasets.utils module.

¢ Quality of life improvements

Reduced load time for import textacy from ~2-3 seconds to ~1 second, by lazy-loading expensive
variables, deferring a couple heavy imports, and dropping a couple dependencies. Specifically:

* ftfy was dropped, and a Not ImplementedError is now raised in textacy’s wrapper function,
textacy.preprocess.fix_bad_unicode (). Users with bad unicode should now directly
call ftfy.fix_text ().

* 17json was dropped, and the behavior of textacy.read_json () is now simpler and consistent
with other functions for line-delimited data.

* mwparserfromhell was dropped, since the reworked Wikipedia dataset no longer requires
complicated and slow parsing of wiki markup.

Renamed certain functions and variables for clarity, and for consistency with existing conventions:
* textacy.load_spacy () =>textacy.load_spacy_lang()
* textacy.extract.named_entities () =>textacy.extract.entities()
* textacy.data_dir =>textacy.DEFAULT_DATA_DIR

* filename => filepath and dirname => dirpath when specifying full paths to
files/dirs on disk, and textacy.io.utils.get_filenames () => textacy.io.utils.
get_filepaths () accordingly

% compiled regular expressions now consistently start with RE_

* SpacyDoc => Doc, SpacySpan => Span, SpacyToken => Token, Spacylang =>
Language as variables and in docs

Removed deprecated functionality

4.4. Changes 131

textacy Documentation, Release 0.10.1

% top-level spacy_utils.py and spacy_pipelines.py are gone; use equivalent functionality
in the spacier subpackage instead

* math_utils.py is gone; it was long neglected, and never actually used

— Replaced textacy.compat.bytes_to_unicode () and textacy.compat.
unicode_to_bytes () with textacy.compat.to_unicode() and textacy.compat.
to_bytes (), which are safer and accept either binary or text strings as input.

— Moved and renamed language detection functionality, textacy.text_utils.
detect_language () => textacy.lang utils.detect_lang (). The idea is to add
more/better lang-related functionality here in the future.

— Updated and cleaned up documentation throughout the code base.

— Added and refactored many tests, for both new and old functionality, significantly increasing test coverage
while significantly reducing run-time. Also, added a proper coverage report to CI builds. This should help
prevent future errors and inspire better test-writing.

— Bumped the minimum required spaCy version: v2.0.0 => v2.0.12, for access to their full set of
custom extension functionality.

Fixed:
* The progress bar during an HTTP download now always closes, preventing weird nesting issues if another bar
is subsequently displayed.

* Filtering datasets by multiple values performed either a logical AND or OR over the values, which was confus-
ing; now, a logical OR is always performed.

¢ The existence of files/directories on disk is now checked properly via os.path.isfile () or os.path.
isdir (), rather than os.path.exists ().

* Fixed a variety of formatting errors raised by sphinx when generating HTML docs.

4.4.8 0.6.3 (2019-03-23)

New:

* Added a proper contributing guide and code of conduct, as well as separate GitHub issue templates for different
user situations. This should help folks contribute to the project more effectively, and make maintaining it a bit
easier, too. [Issue #212]

* Gave the documentation a new look, using a template popularized by requests. Added documentation on
dealing with multi-lingual datasets. [Issue #233]

* Made some minor adjustments to package dependencies, the way they’re specified, and the Travis CI setup,
making for a faster and better development experience.

* Confirmed and enabled compatibility with v2.1+ of spacy. :dizzy:

132 Chapter 4. contents

textacy Documentation, Release 0.10.1

Changed:

* Improved the Wikipedia dataset class in a variety of ways: it can now read Wikinews db dumps; access
records in namespaces other than the usual “0” (such as category pages in namespace “14”); parse and extract
category pages in several languages, including in the case of bad wiki markup; and filter out section headings
from the accompanying text via an include_headings kwarg. [PR #219, #220, #223, #224, #231]

* Removed the transliterate_unicode () preprocessing function that transliterated non-ascii text into
a reasonable ascii approximation, for technical and philosophical reasons. Also removed its GPL-licensed
unidecode dependency, for legal-ish reasons. [Issue #203]

¢ Added convention-abiding exclude argument to the function that writes spacy docs to disk, to limit which
pipeline annotations are serialized. Replaced the existing but non-standard include_tensor arg.

* Deprecated the n_threads argument in Corpus .add_texts (), which had not been working in spacy.
pipe for some time and, as of v2.1, is defunct.

¢ Made many tests model- and python-version agnostic and thus less likely to break when spacy releases new
and improved models.

» Auto-formatted the entire code base using black; the results aren’t always more readable, but they are pleas-
ingly consistent.

Fixed:
* Fixed bad behavior of key_terms_from_semantic_network (), where an error would be raised if no
suitable key terms could be found; now, an empty list is returned instead. [Issue #211]
* Fixed variable name typo so GroupVectorizer.fit () actually works. [Issue #215]
* Fixed a minor typo in the quick-start docs. [PR #217]
* Check for and filter out any named entities that are entirely whitespace, seemingly caused by an issue in spacy.
* Fixed an undefined variable error when merging spans. [Issue #225]

* Fixed a unicode/bytes issue in experimental function for deserializing spacy docs in “binary” format. [Issue
#228, PR #229]

Contributors:

Many thanks to @abevieiramota, @ckot, @Jude188, and @digestOr for their help!

4.4.9 0.6.2 (2018-07-19)
Changed:

* Add a spacier.util module, and add / reorganize relevant functionality
— move (most) spacy_util functions here, and add a deprecation warning to the spacy_ut il module
— rename normalized_str () =>get_normalized_text (), for consistency and clarity

— add a function to split long texts up into chunks but combine them into a single Doc. This is a workaround
for a current limitation of spaCy’s neural models, whose RAM usage scales with the length of input text.

¢ Add experimental support for reading and writing spaCy docs in binary format, where multiple docs are con-
tained in a single file. This functionality was supported by spaCy v1, but is not in spaCy v2; I’ve implemented
a workaround that should work well in most situations, but YMMV.

4.4. Changes 133

textacy Documentation, Release 0.10.1

» Package documentation is now “officially” hosted on GitHub pages. The docs are automatically built on and
deployed from Travis via doctr, so they stay up-to-date with the master branch on GitHub. Maybe someday
I’ll get ReadTheDocs to successfully build textacy once again. ..

* Minor improvements/updates to documentation

Fixed:
* Add missing return statement in deprecated text_stats.flesch_readability_ease () function (Is-
sue #191)
 Catch an empty graph error in bestcoverage-style keyterm ranking (Issue #196)

* Fix mishandling when specifying a single named entity type to in/exclude in extract .named_entities
(Issue #202)

* Make networkx usage in keyterms module compatible with v1.11+ (Issue #199)

4.4.10 0.6.1 (2018-04-11)

New:

* Add a new spacier sub-package for spaCy-oriented functionality (#168, #187)

— Thus far, this includes a components module with two custom spaCy pipeline components: one to
compute text stats on parsed documents, and another to merge named entities into single tokens in an
efficient manner. More to come!

— Similar functionality in the top-level spacy_pipelines module has been deprecated; it will be re-
moved in v0.7.0.

Changed:

» Update the readme, usage, and API reference docs to be clearer and (I hope) more useful. (#186)

* Removing punctuation from a text via the preprocessing module now replaces punctuation marks with a
single space rather than an empty string. This gives better behavior in many situations; for example, “won’t” =>
“won t” rather than “wont”, the latter of which is a valid word with a different meaning.

» Categories are now correctly extracted from non-English language Wikipedia datasets, starting with French and
German and extendable to others. (#175)

* Log progress when adding documents to a corpus. At the debug level, every doc’s addition is logged; at the info
level, only one message per batch of documents is logged. (#183)

Fixed:

* Fix two breaking typos in extract .direct_quotations (). (issue #177)
* Prevent crashes when adding non-parsed documents to a Corpus. (#180)

* Fix bugs in keyterms.most_discriminating_terms () that used vsm functionality as it was before
the changes in v0.6.0. (#189)

 Fix a breaking typo in vsm.matrix_utils.apply_idf_weighting (), and rename the problematic
kwarg for consistency with related functions. (#190)

134 Chapter 4. contents

textacy Documentation, Release 0.10.1

Contributors:

Big thanks

to @sammous, @dixiekong (nice name!), and @SandyRogers for the pull requests, and many more for

pointing out various bugs and the rougher edges / unsupported use cases of this package.

4411 0

Changed:

.6.0 (2018-02-25)

¢ Rename, refactor, and extend I/O functionality (PR #151)

Related read/write functions were moved from read.py and write.py into format-specific
modules, and similar functions were consolidated into one with the addition of an arg.
For example, write.write_json() and write.write_json_lines() => Jjson.
write_json(lines=True|False).

Useful functionality was added to a few readers/writers. For example, write_Jjson () now automati-
cally handles python dates/datetimes, writing them to disk as ISO-formatted strings rather than raising a
TypeError (“datetime is not JSON serializable”, ugh). CSVs can now be written to / read from disk when
each row is a dict rather than a list. Reading/writing HTTP streams now allows for basic authentication.

Several things were renamed to improve clarity and consistency from a user’s perspective, most notably the
subpackage name: fileio => io. Others: read_file () and write_file () => read_text ()
andwrite_text ();split_record_fields () =>split_records (), althoughIkept an alias
to the old function for folks; auto_make_dirs boolean kwarg =>make_dirs.

io.open_sesame () now handles zip files (provided they contain only 1 file) as it already does for gzip,
bz2, and 1zma files. On a related note, Python 2 users can now open lzma (. xz) files if they’ve installed
backports.lzma.

¢ Improve, refactor, and extend vector space model functionality (PRs #156 and #167)

BM25 term weighting and document-length normalization were implemented, and and users can now
flexibly add and customize individual components of an overall weighting scheme (local scaling + global
scaling + doc-wise normalization). For API sanity, several additions and changes to the Vectorizer
init params were required — sorry bout it!

Given all the new weighting possibilities, a Vectorizer.weighting attribute was added for curious
users, to give a mathematical representation of how values in a doc-term matrix are being calculated.
Here’s a simple and a not-so-simple case:

>>> Vectorizer (apply_idf=True, idf_type='smooth') .weighting

'tf » log((n_docs + 1) / (df + 1)) + 1!

>>> Vectorizer (tf_type="'bm25', apply_idf=True, idf_type='smooth', apply_
—dl=True) .weighting

"(tf x (k + 1)) / (tf + k » (1 - b + b x (length / avg(lengths))) * log((n_
—~docs - df + 0.5) / (df + 0.5))"

Terms are now sorted alphabetically after fitting, so you’ll have a consistent and interpretable ordering in
your vocabulary and doc-term-matrix.

A GroupVectorizer class was added, as a child of Vectorizer and an extension of typical
document-term matrix vectorization, in which each row vector corresponds to the weighted terms co-
occurring in a single document. This allows for customized grouping, such as by a shared author or
publication year, that may span multiple documents, without forcing users to merge /concatenate those
documents themselves.

4.4. Changes 135

textacy Documentation, Release 0.10.1

— Lastly, the vsm. py module was refactored into a vsm subpackage with two modules. Imports should stay
the same, but the code structure is now more amenable to future additions.

¢ Miscellaneous additions and improvements

— Flesch Reading Ease in the text stats module is now multi-lingual! Language- specific formulations
for German, Spanish, French, Italian, Dutch, and Russian were added, in addition to (the default) English.
(PR #158, prompted by Issue #155)

— Runtime performance, as well as docs and error messages, of functions for generating semantic networks
from lists of terms or sentences were improved. (PR #163)

— Labels on named entities from which determiners have been dropped are now preserved. There’s still a
minor gotcha, but it’s explained in the docs.

— The size of textacy’s data cache can now be set via an environment variable,
TEXTACY_MAX_CACHE_SIZE, in case the default 2GB cache doesn’t meet your needs.

— Docstrings were improved in many ways, large and small, throughout the code. May they guide you even
more effectively than before!

— The package version is now set from a single source. This isn’t for you so much as me, but it does prevent
confusing version mismatches b/w code, pypi, and docs.

— All tests have been converted from unittest to pytest style. They run faster, they’re more informative
in failure, and they’re easier to extend.

Fixed:

Fixed an issue where existing metadata associated with a spacy Doc was being overwritten with an empty dict
when using it to initialize a textacy Doc. Users can still overwrite existing metadata, but only if they pass in new
data.

Added a missing import to the README’s usage example. (#149)

The intersphinx mapping to numpy got fixed (and items for scipy and matplotlib were added, too).
Taking advantage of that, a bunch of broken object links scattered throughout the docs got fixed.

Fixed broken formatting of old entries in the changelog, for your reading pleasure.

4.4.12 0.5.0 (2017-12-04)

Changed:

* Bumped version requirement for spaCy from < 2.0 to >= 2.0 — textacy no longer works with spaCy 1.x! It’s

worth the upgrade, though. v2.0’s new features and API enabled (or required) a few changes on textacy’s end

- textacy.load_spacy () takes the same inputs as the new spacy.load (), i.e. a package name
string and an optional list of pipes to disable

— textacy’s Doc metadata and language string are now stored in user_data directly on the spaCy Doc
object; although the API from a user’s perspective is unchanged, this made the next change possible

— Doc and Corpus classes are now de/serialized via pickle into a single file — no more side-car JSON files
for metadata! Accordingly, the . save () and .load () methods on both classes have a simpler API:
they take a single string specifying the file on disk where data is stored.

* Cleaned up docs, imports, and tests throughout the entire code base.

136

Chapter 4. contents

textacy Documentation, Release 0.10.1

— docstrings and https://textacy.readthedocs.io ‘s API reference are easier to read, with better cross-
referencing and far fewer broken web links

— namespaces are less cluttered, and textacy’s source code is easier to follow
— import textacy takes less than half the time from before

— the full test suite also runs about twice as fast, and most tests are now more robust to changes in the
performance of spaCy’s models

— consistent adherence to conventions eases users’ cognitive load :)

¢ The module responsible for caching loaded data in memory was cleaned up and improved, as well as

renamed: from data.py to cache.py, which is more descriptive of its purpose. Otherwise, you shouldn’t
notice much of a difference besides things working correctly.

— All loaded data (e.g. spacy language pipelines) is now cached together in a single LRU cache whose
max size is set to 2GB, and the size of each element in the cache is now accurately computed. (tl;dr:
sys.getsizeof does not work on non-built-in objects like, say, a spacy.tokens.Doc.)

— Loading and downloading of the DepecheMood resource is now less hacky and weird, and much closer to
how users already deal with textacy’s various Dataset s, In fact, it can be downloaded in exactly the same
way as the datasets via textacy’s new CLI: $ python -m textacy download depechemood.
P.S. A brief guide for using the CLI got added to the README.

 Several function/method arguments marked for deprecation have been removed. If you’ve been ignoring

the warnings that print out when you use lemmatize=True instead of normalize="1lemma' (etc.), now
is the time to update your calls!

— Of particular note: The readability_stats () function has been removed; use
TextStats (doc) .readability_stats instead.

Fixed:

In certain situations, the text of a spaCy span was being returned without whitespace between to-
kens; that has been avoided in textacy, and the source bug in spaCy got fixed (by yours truly!
https://github.com/explosion/spaCy/pull/1621).

When adding already-parsed Docs to a Corpus, including metadata now correctly overwrites any existing
metadata on those docs.

Fixed a couple related issues involving the assignment of a 2-letter language string to the . lang attribute of
Doc and Corpus objects.

textacy’s CLI wasn’t correctly handling certain dataset kwargs in all cases; now, all kwargs get to their intended
destinations.

4.4.13 0.4.2 (2017-11-28)

New:

* Added a CLI for downloading textacy-related data, inspired by the spaCy equivalent. It’s temporarily

undocumented, but to see available commands and options, just pass the usual flag: $ python -m textacy
——help. Expect more functionality (and docs!) to be added soonish. (#144)

— Note: The existing Dataset .download () methods work as before, and in fact, they are being called
under the hood from the command line.

4.4.

Changes 137

textacy Documentation, Release 0.10.1

Changed:
* Made usage of networkx v2.0-compatible, and therefore dropped the <2.0 version requirement on that depen-
dency. Upgrade as you please! (#131)

 Improved the regex for identifying phone numbers so that it’s easier to view and interpret its matches. (#128)

Fixed:

* Fixed caching of counts on textacy .Doc instance-specific, rather than shared by all instances of the class.
Oops.

9

* Fixed currency symbols regex, so as not to replace all instances of the letter “z” when a custom string is passed
into replace_currency_symbols (). (#137)

* Fixed README usage example, which skipped downloading of dataset data. Btw, see above for another way!
(#124)

¢ Fixed typo in the API reference, which included the SupremeCourt dataset twice and omitted the RedditCom-
ments dataset. (#129)

* Fixed typo in RedditComments.download () that prevented it from downloading any data. (#143)

Contributors:

Many thanks to @asifm, @harryhoch, and @mdlynch37 for submitting PRs!

4.4.14 0.4.1 (2017-07-27)

Changed:

* Added key classes to the top-level textacy imports, for convenience:
— textacy.text_stats.TextStats =>textacy.TextStats
- textacy.vsm.Vectorizer =>textacy.Vectorizer
— textacy.tm.TopicModel =>textacy.TopicModel

* Added tests for textacy.Doc and updated the README’s usage example

Fixed:
* Added explicit encoding when opening Wikipedia database files in text mode to resolve an issue when doing so
without encoding on Windows (PR #118)

¢ Fixed keyterms.most_discriminating_terms to use the vsm.Vectorizer class rather than the
vsm.doc_term_matrix function that it replaced (PR #120)

* Fixed mishandling of a couple optional args in Doc.to_terms_list

138 Chapter 4. contents

textacy Documentation, Release 0.10.1

Contributors:

Thanks to @minketeer and @Gregory-Howard for the fixes!

4.4.15 0.4.0 (2017-06-21)
New and Changed:

* Refactored and expanded built-in corpora, now called datasets (PR #112)

— The various classes in the old corpora subpackage had a similar but frustratingly not-identical API. Also,
some fetched the corresponding dataset automatically, while others required users to do it themselves. Ugh.

— These classes have been ported over to a new datasets subpackage; they now have a consistent API,
consistent features, and consistent documentation. They also have some new functionality, including pain-
free downloading of the data and saving it to disk in a stream (so as not to use all your RAM).

— Also, there’s a new dataset: A collection of 2.7k Creative Commons texts from the Oxford Text Archive,
which rounds out the included datasets with English-language, 16th-20th century literary works. (h/t
@JonathanReeve)

* A Vectorizer class to convert tokenized texts into variously weighted document-term matrices (Issue #69,
PR #113)

— This class uses the familiar scikit—-1learn API (which is also consistent with the textacy.tm.
TopicModel class) to convert one or more documents in the form of “term lists” into weighted vectors.
An initial set of documents is used to build up the matrix vocabulary (via . £it ()), which can then be
applied to new documents (via . transform()).

— It’s similar in concept and usage to sklearn’s CountVectorizer or TfidfVectorizer, but doesn’t
convolve the tokenization task as they do. This means users have more flexibility in deciding which terms
to vectorize. This class outright replaces the textacy.vsm.doc_term_matrix () function.

 Customizable automatic language detection for Doc s

— Although c1d2-cffi is fast and accurate, its installation is problematic for some users. Since other
language detection libraries are available (e.g. 1angdetect and langid), it makes sense to let users
choose, as needed or desired.

— First, c1d2-cffi is now an optional dependency, i.e. is not installed by default. To install it,
do pip install textacy[lang] or (for it and all other optional deps) do pip install
textacylall]. (PR #86)

— Second, the 1ang param used to instantiate Doc objects may now be a callable that accepts a unicode
string and returns a standard 2-letter language code. This could be a function that uses langdetect
under the hood, or a function that always returns “de” — it’s up to users. Note that the default value is now
textacy.text_utils.detect_language (), which uses c1d2—-cffi, so the default behavior
is unchanged.

* Customizable punctuation removal in the preprocessing module (Issue #91)

— Users can now specify which punctuation marks they wish to remove, rather than always removing all
marks.

— In the case that all marks are removed, however, performance is now 5-10x faster by using Python’s built-in
str.translate () method instead of a regular expression.

* textacy, installable via conda (PR #100)

4.4. Changes 139

https://github.com/Mimino666/langdetect
https://github.com/saffsd/langid.py

textacy Documentation, Release 0.10.1

— The package has been added to Conda-Forge (here), and installation instructions have been added to the
docs. Hurray!

* textacy, now with helpful badges

— Builds are now automatically tested via Travis CI, and there’s a badge in the docs showing whether the
build passed or not. The days of my ignoring broken tests in master are (probably) over. ..

— There are also badges showing the latest releases on GitHub, pypi, and conda-forge (see above).

Fixed:
* Fixed the check for overlap between named entities and unigrams in the Doc.to_terms_list () method
(PR #111)

e Corpus.add_texts () uses CPU_COUNT - 1 threads by default, rather than always assuming that 4 cores
are available (Issue #89)

* Added a missing coding declaration to a test file, without which tests failed for Python 2 (PR #99)

* readability_stats () now catches an exception raised on empty documents and logs a message, rather
than barfing with an unhelpful ZeroDivisionError. (Issue #88)

* Added a check for empty terms list in terms_to_semantic_network (Issue #105)

¢ Added and standardized module-specific loggers throughout the code base; not a bug per sé, but certainly some
much-needed housecleaning

* Added a note to the docs about expectations for bytes vs. unicode text (PR #103)

Contributors:

Thanks to @henridwyer, @rolando, @pavlin99th, and @kyocum for their contributions! :raised_hands:

4.4.16 0.3.4 (2017-04-17)

New and Changed:

* Improved and expanded calculation of basic counts and readability statistics in text_stats module.

— Added a TextStats () class for more convenient, granular access to individual values. See usage docs
for more info. When calculating, say, just one readability statistic, performance with this class should be
slightly better; if calculating all statistics, performance is worse owing to unavoidable, added overhead in
Python for variable lookups. The legacy function text_stats.readability_stats () still exists
and behaves as before, but a deprecation warning is displayed.

— Added functions for calculating Wiener Sachtextformel (PR #77), LIX, and GULPease readability statis-
tics.

— Added number of long words and number of monosyllabic words to basic counts.

* Clarified the need for having spacy models installed for most use cases of textacy, in addition to just the spacy
package.

— README updated with comments on this, including links to more extensive spacy documentation. (Issues
#66 and #68)

— Added a function, compat .get_config () thatincludes information about which (if any) spacy mod-
els are installed.

140 Chapter 4. contents

https://github.com/conda-forge/textacy-feedstock

textacy Documentation, Release 0.10.1

— Recent changes to spacy, including a warning message, will also make model problems more apparent.

* Added an ngrams parameter to keyterms.sgrank (), allowing for more flexibility in specifying valid
keyterm candidates for the algorithm. (PR #75)

* Dropped dependency on fuzzywuzzy package, replacing usage of fuzz.token_sort_ratio () witha
textacy equivalent in order to avoid license incompatibilities. As a bonus, the new code seems to perform faster!
(Issue #62)

— Note: Outputs are now floats in [0.0, 1.0], consistent with other similarity functions, whereas be-
fore outputs were ints in [0, 100]. This has implications for match_threshold values passed to
similarity.jaccard(); a warning is displayed and the conversion is performed automatically, for
now.

e A MANIFEST.in file was added to include docs, tests, and distribution files in the source distribution. This is
just good practice. (PR #65)

Fixed:

e Known acronym-definition pairs are now properly handled in extract.
acronyms_and_definitions () (Issue #61)

» WikiReader no longer crashes on null page element content while parsing (PR #64)

* Fixed a rare but perfectly legal edge case exception in keyterms.sgrank (), and added a window width
sanity check. (Issue #72)

* Fixed assignment of 2-letter language codes to Doc and Corpus objects when the lang parameter is specified
as a full spacy model name.

* Replaced several leftover print statements with proper logging functions.

Contributors:

Big thanks to @oroszgy, @rolando, @covuworie, and @RolandColored for the pull requests!

4.4.17 0.3.3 (2017-02-10)
New and Changed:

* Added a consistent normalize param to functions and methods that require token/span text normalization.
Typically, it takes one of the following values: ‘lemma’ to lemmatize tokens, ‘lower’ to lowercase tokens, False-
y to not normalize tokens, or a function that converts a spacy token or span into a string, in whatever way the
user prefers (e.g. spacy_utils.normalized_str()).

— Functions modified to use this param: Doc.to_bag_of_terms (), Doc.to_bag_of_words (),
Doc.to_terms_list (), Doc.to_semantic_network (), Corpus.word_freqgs(),
Corpus.word_doc_freqgs (), keyterms.sgrank (), keyterms.textrank (), keyterms.
singlerank (), keyterms.key_terms_from_semantic_network (), network.
terms_to_semantic_network (), network.sents_to_semantic_network ()

* Tweaked keyterms.sgrank () for higher quality results and improved internal performance.

e When getting both n-grams and named entities with Doc.to_terms_1list (), filtering out numeric spans
for only one is automatically extended to the other. This prevents unexpected behavior, such as passing
filter_nums=True but getting numeric named entities back in the terms list.

4.4. Changes 141

textacy Documentation, Release 0.10.1

Fixed:
* keyterms.sgrank () no longer crashes if a term is missing from 1idfs mapping. (@jeremybmerrill, issue
#53)

e Proper nouns are no longer excluded from consideration as keyterms in keyterms.sgrank () and
keyterms.textrank (). (@jeremybmerrill, issue #53)

* Empty strings are now excluded from consideration as keyterms — a bug inherited from spaCy. (@mlehl88,
issue #58)

4.4.18 0.3.2 (2016-11-15)

New and Changed:

¢ Preliminary inclusion of custom spaCy pipelines

— updated 1oad_spacy () to include explicit path and create_pipeline kwargs, and removed the already-
deprecated load_spacy_pipeline () function to avoid confusion around spaCy languages and
pipelines

— added spacy_pipelines module to hold implementations of custom spaCy pipelines, including a
basic one that merges entities into single tokens

— note: necessarily bumped minimum spaCy version to 1.1.0+
— see the announcement here: https://explosion.ai/blog/spacy-deep-learning-keras
¢ To reduce code bloat, made the matplot 1ib dependency optional and dropped the gensim dependency
— toinstall matplotlib at the same time as textacy,do $ pip install textacyl[viz]
— bonus: backports.csv is now only installed for Py2 users
— thanks to @mbatchkarov for the request

e Improved performance of textacy.corpora.WikiReader () .texts (); results should stream faster
and have cleaner plaintext content than when they were produced by gensim. This should also fix a bug
reported in Issue #51 by @baisk

* Added a Corpus.vectors property that returns a matrix of shape (# documents, vector dim) containing the
average word2vec-style vector representation of constituent tokens for all Doc s

4.4.19 0.3.1 (2016-10-19)

Changed:

» Updated spaCy dependency to the latest v1.0.1; set a floor on other dependencies’ versions to make sure every-
one’s running reasonably up-to-date code

142 Chapter 4. contents

textacy Documentation, Release 0.10.1

Fixed:

* Fixed incorrect kwarg in sgrank ‘s call to extract .ngrams () (@patcollis34, issue #44)

¢ Fixed import for cachetool ‘s hashkey, which changed in the v2.0 (@gramonov, issue #45)

4.4.20 0.3.0 (2016-08-23)

New and Changed:

* Refactored and streamlined TextDoc; changed name to Doc

simplified init params: lang can now be a language code string or an equivalent spacy.Language
object, and content is either a string or spacy.Doc; param values and their interactions are better
checked for errors and inconsistencies

renamed and improved methods transforming the Doc; for example, .as_bag_of_terms () is now
.to_bag_of_terms (), and terms can be returned as integer ids (default) or as strings with absolute,
relative, or binary frequencies as weights

added performant .to_bag_of_words () method, at the cost of less customizability of what gets in-
cluded in the bag (no stopwords or punctuation); words can be returned as integer ids (default) or as strings
with absolute, relative, or binary frequencies as weights

removed methods wrapping extract functions, in favor of simply calling that function on the Doc
(see below for updates to ext ract functions to make this more convenient); for example, TextDoc.
words () iIsnow extract .words (Doc)

removed .term_counts () method, which was redundant with Doc.to_bag_of_terms ()

renamed .term_count () => .count (), and checking + caching results is now smarter and faster

» Refactored and streamlined Text Corpus; changed name to Corpus

added init params: can now initialize a Corpus with a stream of texts, spacy or textacy Docs, and optional
metadatas, analogous to Doc; accordingly, removed . from_texts () class method

refactored, streamlined, bug-fixed, and made consistent the process of adding, getting, and removing doc-
uments from Corpus

* getting/removing by index is now equivalent to the built-in 1ist API: Corpus[:5] gets the first
5Docs,and del Corpus|[:5] removes the first 5, automatically keeping track of corpus statistics
for total # docs, sents, and tokens

* getting/removing by boolean function is now done via the .get () and . remove () methods, the
latter of which now also correctly tracks corpus stats

adding documents is split across the .add_text (), .add_texts (), and .add_doc () methods
for performance and clarity reasons

added .word_fregs () and .word_doc_fregs () methods for getting a mapping of word (int id or
string) to global weight (absolute, relative, binary, or inverse frequency); akin to a vectorized representation
(see: textacy.vsm) but in non-vectorized form, which can be useful

removed .as_doc_term_matrix () method, which was just wrapping another function; so, instead
of corpus.as_doc_term_matrix((doc.as_terms_list () for doc in corpus)),
do textacy.vsm.doc_term_matrix((doc.to_terms_list (as_strings=True) for
doc in corpus))

¢ Updated several ext ract functions

4.4. Changes 143

textacy Documentation, Release 0.10.1

— almost all now accept either a textacy.Doc or spacy.Doc as input

— renamed and improved parameters for filtering for or against certain POS or NE types; for example,
good_pos_tags is now include_pos, and will accept either a single POS tag as a string or a
set of POS tags to filter for; same goes for exclude_pos, and analogously include_types, and
exclude_types

Updated corpora classes for consistency and added flexibility

— enforced a consistent API: .texts () for a stream of plain text documents and .records () for a
stream of dicts containing both text and metadata

— added filtering options for RedditReader, e.g. by date or subreddit, consistent with other corpora
(similar tweaks to Wik iReader may come later, but it’s slightly more complicated. . .)

— added a nicer repr for RedditReader and WikiReader corpora, consistent with other corpora

Moved vsm.py and network . py into the top-level of t ext acy and thus removed the representations
subpackage

— renamed vsm.build_doc_term matrix () =>vsm.doc_term matrix (), because the “build”
part of it is obvious

Renamed distance.py =>similarity.py; all returned values are now similarity metrics in the interval
[0, 1], where higher values indicate higher similarity

Renamed regexes_etc.py => constants.py, without additional changes

Renamed fileio.utils.split_content_and_metadata () => fileio.utils.
split_record_fields (), without further changes (except for tweaks to the docstring)

Added functions to read and write delimited file formats: fileio.read csv() and fileio.
write_csv (), where the delimiter can be any valid one-char string; gzip/bzip/lzma compression is handled
automatically when available

Added better and more consistent docstrings and usage examples throughout the code base

4.4.21 0.2.8 (2016-08-03)

New:

* Added two new corpora!

— the CapitolWords corpus: a collection of 11k speeches (~7M tokens) given by the main protagonists of
the 2016 U.S. Presidential election that had previously served in the U.S. Congress — including Hillary
Clinton, Bernie Sanders, Barack Obama, Ted Cruz, and John Kasich — from January 1996 through June
2016

— the SupremeCourt corpus: a collection of 8.4k court cases (~71M tokens) decided by the U.S. Supreme
Court from 1946 through 2016, with metadata on subject matter categories, ideology, and voting patterns

— DEPRECATED: the Bernie and Hillary corpus, which is a small subset of CapitolWords that can be
easily recreated by filtering CapitolWords by speaker_name={'Bernie Sanders', 'Hillary
Clinton'}

144

Chapter 4. contents

textacy Documentation, Release 0.10.1

Changed:

* Refactored and improved fileio subpackage

moved shared (read/write) functions into separate fileio.utils module

almost all read/write functions now use fileio.utils.open_sesame (), enabling seamless fileio
for uncompressed or gzip, bz2, and 1zma compressed files; relative/user-home-based paths; and missing
intermediate directories. NOTE: certain file mode / compression pairs simply don’t work (this is Python’s
fault), so users may run into exceptions; in Python 3, you’ll almost always want to use text mode (‘wt’ or
‘rt’), but in Python 2, users can’t read or write compressed files in text mode, only binary mode (‘wb’ or
‘b’)

added options for writing json files (matching stdlib’s json . dump ()) that can help save space

fileio.utils.get_filenames () now matches for/against a regex pattern rather than just a con-
tained substring; using the old params will now raise a deprecation warning

BREAKING: fileio.utils.split_content_and_metadata () now has
itemwise=False by default, rather than itemwise=True, which means that splitting multi-
document streams of content and metadata into parallel iterators is now the default action

added compression param to TextCorpus.save () and .load () to optionally write metadata
json file in compressed form

moved fileio.write_conll () functionality to export.doc_to_conll (), which converts a
spaCy doc into a ConLL-U formatted string; writing that string to disk would require a separate call to
fileio.write_file ()

¢ Cleaned up deprecated/bad Py2/3 compat imports, and added better functionality for Py2/3 strings

Fixed:

now compat.unicode_type used for text data, compat.bytes_type for binary data, and
compat .string_types for when either will do

also added compat .unicode_to_bytes () and compat .bytes_to_unicode () functions, for
converting between string types

* Fixed document(s) removal from TextCorpus objects, including correct decrementing of .n_docs,
n_sents, and .n_tokens attributes (@michelleful #29)

* Fixed OSError being incorrectly raised in fileio.open_sesame () on missing files

* lang parameter in TextDoc and TextCorpus can now be unicode or bytes, which was bug-like

4.4.22 0.2.5 (2016-07-14)

Fixed:

* Added (missing) pyemd and python-levenshtein dependencies to requirements and setup files

* Fixed bugin data.load_depechemood () arising from the Py2 csv module’s inability to take unicode as
input (thanks to @robclewley, issue #25)

4.4. Changes 145

textacy Documentation, Release 0.10.1

4.4.23 0.2.4 (2016-07-14)

New and Changed:

¢ New features for TextDoc and TextCorpus classes

— added .save () methods and . 1oad () classmethods, which allows for fast serialization of parsed doc-
uments/corpora and associated metadata to/from disk — with an important caveat: if spacy.Vocab
object used to serialize and deserialize is not the same, there will be problems, making this format useful
as short-term but not long-term storage

— TextCorpus may now be instantiated with an already-loaded spaCy pipeline, which may or may not
have all models loaded; it can still be instantiated using a language code string (‘en’, ‘de’) to load a spaCy
pipeline that includes all models by default

— TextDoc methods wrapping extract and keyterms functions now have full documentation rather
than forwarding users to the wrapped functions themselves; more irritating on the dev side, but much less
irritating on the user side :)

¢ Added a distance.py module containing several document, set, and string distance metrics

— word movers: document distance as distance between individual words represented by word2vec vectors,
normalized

“word2vec”: token, span, or document distance as cosine distance between (average) word2vec represen-
tations, normalized

jaccard: string or set(string) distance as intersection / overlap, normalized, with optional fuzzy-matching
across set members

hamming: distance between two strings as number of substititions, optionally normalized

levenshtein: distance between two strings as number of substitions, deletions, and insertions, optionally
normalized (and removed a redundant function from the still-orphaned math_utils.py module)

— jaro-winkler: distance between two strings with variable prefix weighting, normalized

¢ Added most_discriminating_terms () function to keyterms module to take a collection of docu-
ments split into two exclusive groups and compute the most discriminating terms for group1-and-not-group2 as
well as group2-and-not-group1

Fixed:

* fixed variable name error in docs usage example (thanks to @licyeus, PR #23)

4.4.24 0.2.3 (2016-06-20)

New and Changed:

¢ Added corpora.RedditReader () class for streaming Reddit comments from disk, with .texts ()
method for a stream of plaintext comments and . comment s () method for a stream of structured comments as
dicts, with basic filtering by text length and limiting the number of comments returned

» Refactored functions for streaming Wikipedia articles from disk into a corpora.WikiReader () class, with
.texts () method for a stream of plaintext articles and .pages () method for a stream of structured pages
as dicts, with basic filtering by text length and limiting the number of pages returned

146 Chapter 4. contents

textacy Documentation, Release 0.10.1

* Updated README and docs with a more comprehensive — and correct — usage example; also added tests to
ensure it doesn’t get stale

» Updated requirements to latest version of spaCy, as well as added matplotlib for viz

Fixed:
* textacy.preprocess.preprocess_text () is now, once again, imported at the top level, so easily
reachable via textacy.preprocess_text () (@bretdabaker #14)
* viz subpackage now included in the docs’ API reference

* missing dependencies added into setup . py so pip install handles everything for folks

4.4.25 0.2.2 (2016-05-05)

New and Changed:

* Added a viz subpackage, with two types of plots (so far):

— viz.draw_termite_plot (), typically used to evaluate and interpret topic models; conveniently ac-
cessible from the tm. TopicModel class

— viz.draw_semantic_network () for visualizing networks such as those output by
representations.network

Added a “Bernie & Hillary” corpus with 3000 congressional speeches made by Bernie Sanders and Hillary
Clinton since 1996

— corpora.fetch_bernie_and_hillary () function automatically downloads to and loads from
disk this corpus

Modified data.load_depechemood function, now downloads data from GitHub source if not found on
disk

* Removed resources/ directory from GitHub, hence all the downloadin’
» Updated to spaCy v0.100.7
— German is now supported! although some functionality is English-only

— added textacy.load_spacy () function for loading spaCy packages, taking advan-
tage of the new spacy.load() API;, added a DeprecationWarning for textacy.data.
load_spacy_pipeline ()

— proper nouns’ and pronouns’ . pos__ attributes are now correctly assigned ‘PROPN’ and ‘PRON’; hence,
modified regexes_etc.POS_REGEX_PATTERNS|['en'] to include ‘PROPN’

— modified spacy_utils.preserve_case () to check for language-agnostic ‘PROPN’ POS rather
than English-specific ‘NNP’ and ‘NNPS’ tags

* Added text_utils.clean_terms () function for cleaning up a sequence of single- or multi-word strings
by stripping leading/trailing junk chars, handling dangling parens and odd hyphenation, etc.

4.4. Changes 147

textacy Documentation, Release 0.10.1

Fixed:
* textstats.readability_stats () now correctly gets the number of words in a doc from its generator
function (@gryBox #8)
» removed NLTK dependency, which wasn’t actually required
e text_utils.detect_language () now warns via 1ogging rather than a print () statement

e fileio.write_conll () documentation now correctly indicates that the filename param is not optional

4.4.26 0.2.0 (2016-04-11)

New and Changed:
¢ Added representations subpackage; includes modules for network and vector space model (VSM) docu-
ment and corpus representations

— Document-term matrix creation now takes documents represented as a list of terms (rather than as spaCy
Docs); splits the tokenization step from vectorization for added flexibility

— Some of this functionality was refactored from existing parts of the package

¢ Added tm (topic modeling) subpackage, with a main TopicModel class for training, applying, persisting, and
interpreting NMF, LDA, and LSA topic models through a single interface

 Various improvements to TextDoc and TextCorpus classes
— TextDoc can now be initialized from a spaCy Doc
— Removed caching from TextDoc, because it was a pain and weird and probably not all that useful
— extract-based methods are now generators, like the functions they wrap
— Added .as_semantic_network () and .as_terms_list () methodsto TextDoc

— TextCorpus.from_texts () now takes advantage of multithreading via spaCy, if available, and doc-
ument metadata can be passed in as a paired iterable of dicts

* Added read/write functions for sparse scipy matrices

* Added fileio.read.split_content_and_metadata () convenience function for splitting (text)
content from associated metadata when reading data from disk into a TextDoc or TextCorpus

e Renamed fileio.read.get_filenames_in_dir () to fileio.read.get_filenames () and
added functionality for matching/ignoring files by their names, file extensions, and ignoring invisible files

* Rewrote export.docs_to_gensim(), now significantly faster

e Importsin __init__ .py files for main and subpackages now explicit

148 Chapter 4. contents

textacy Documentation, Release 0.10.1

Fixed:

* textstats.readability_stats () no longer filters out stop words (@henningko #7)
* Wikipedia article processing now recursively removes nested markup
* extract.ngrams () now filters out ngrams with any space-only tokens

* functions with include_nps kwarg changed to include_ncs, to match the renaming of the associated
function from extract .noun_phrases () to extract.noun_chunks ()

4.4.27 0.1.4 (2016-02-26)

New:
¢ Added corpora subpackage with wikipedia . py module; functions for streaming pages from a Wikipedia
db dump as plain text or structured data
* Added fileio subpackage with functions for reading/writing content from/to disk in common formats
— JSON formats, both standard and streaming-friendly
— text, optionally compressed

— spacy documents to/from binary

4.4.28 0.1.3 (2016-02-22)

New:
* Added export .py module for exporting textacy/spacy objects into “third-party” formats; so far, just gensim
and conll-u
¢ Added compat . py module for Py2/3 compatibility hacks

* Added TextDoc.merge () and spacy_utils.merge_spans () for merging spans into single tokens
within a spacy.Doc, uses Spacy’s recent implementation

Changed:
* Renamed extract.noun_phrases () to extract.noun_chunks () to match Spacy’s API
* Changed extract functions to generators, rather than returning lists

Fixed:

* Whitespace tokens now always filtered out of extract .words () lists
* Some Py2/3 str/unicode issues fixed

* Broken tests in test_extract.py no longer broken

4.4. Changes 149

textacy Documentation, Release 0.10.1

150 Chapter 4. contents

t

textacy.
textacy.
textacy.
textacy.
.corpus, 19

textacy

textacy.
textacy.
textacy.

augmentation.augmenter, 101
augmentation.transforms, 103
augmentation.utils, 105
cache, 111

datasets.capitol_words, 32
datasets.imdb, 46
datasets.oxford_text_archive,

44

textacy

textacy

textacy.
textacy.
textacy.
textacy.
.network, 123
textacy.
textacy.
textacy.
textacy.
.resources.depeche_mood, 53
textacy.
textacy.
textacy.
textacy.
.spacier.utils, 31

textacy

textacy

textacy

textacy.
textacy.
textacy.

.datasets.reddit_comments, 42
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
.ke.sgrank, 66

datasets.supreme_court, 35
datasets.udhr, 48
datasets.wikimedia, 38
extract, 59

io.csv, 91

io.http, 95

io.json, 89
io.matrix, 93
io.spacy, 93
io.text, 88
io.utils, 96
ke.scake, 66

ke.textrank, 64
ke.utils, 67
ke.yake, 65
lang_utils, 107

preprocessing.normalize, 56
preprocessing.remove, 57
preprocessing.replace, 58
resources.concept_net, 50

similarity, 120
spacier.components, 30
spacier.core, 17
spacier.doc_extensions, 25

text_stats.api, 112
text_stats.basics, 116
text_stats.readability, 117

textacy.
textacy.
textacy.
textacy.
.viz.termite, 98
textacy.
textacy.

textacy

PYTHON MODULE INDEX

text_utils, 108
tm.topic_model, 83
utils, 109
viz.network, 100

vsm.matrix_utils, 80
vsm.vectorizers, 70

151

textacy Documentation, Release 0.10.1

152 Python Module Index

A

acronyms_and_definitions ()
tacy.extract), 63

add () (textacy.corpus.Corpus method), 20

add_doc () (textacy.corpus.Corpus method), 22

add_docs () (textacy.corpus.Corpus method), 22

add_record () (textacy.corpus.Corpus method), 21

add_records () (textacy.corpus.Corpus method), 21

add_text () (textacy.corpus.Corpus method), 21

add_texts () (textacy.corpus.Corpus method), 21

aggregate_term_variants () (in module tex-
tacy.ke.utils), 68

antonyms () (fextacy.resources.concept_net.ConceptNet

property), 51

(in module tex-

apply_idf_weighting() (in module tex-
tacy.vsm.matrix_utils), 81
apply_transforms () (tex-

tacy.augmentation.augmenter.Augmenter
method), 102

Augmenter (class in textacy.augmentation.augmenter),
101

AugTok (class in textacy.augmentation.utils), 105

authors (textacy.datasets.oxford_text_archive.OxfordTextdrehee_words ()

attribute), 45
automated_readability_index ()
textacy.text_stats.readability), 117
automated_readability_index ()
tacy.text_stats.api. TextStats property), 114
automatic_arabic_readability_index () (in
module textacy.text_stats.readability), 118
automatic_arabic_readability_index ()
(textacy.text_stats.api.TextStats property), 114

(in module

(tex-

C

Candidate (class in textacy.ke.sgrank), 66

CapitolWords (class in
tacy.datasets.capitol_words), 33

chambers (textacy.datasets.capitol_words. CapitolWords
attribute), 33

character_ngrams () (in module textacy.similarity),
122

clean_terms () (in module textacy.text_utils), 109

tex-

INDEX

clear () (in module textacy.cache), 111

coerce_content_type () (in module tex-
tacy.io.utils), 97

coleman_liau_index () (in module tex-
tacy.text_stats.readability), 118

coleman_liau_index () (tex-

tacy.text_stats.api. TextStats property), 114
ConceptNet (class in textacy.resources.concept_net),
50
congresses (textacy.datasets.capitol_words. CapitolWords
attribute), 34
Corpus (class in textacy.corpus), 19
count (textacy.ke.sgrank.Candidate attribute), 66

D

decision_directions (tex-
tacy.datasets.supreme_court.SupremeCourt
attribute), 37

default () (textacy.io.json.ExtendedJSONEncoder
method), 91

delete_chars () (in module tex-
tacy.augmentation.transforms), 105

(in module tex-
tacy.augmentation.transforms), 104

DepecheMood (class in tex-

tacy.resources.depeche_mood), 53
deprecated () (in module textacy.utils), 109
direct_quotations () (in module textacy.extract),
64
docs (textacy.corpus.Corpus attribute), 20
download () (textacy.datasets.capitol_words.CapitolWords
method), 34
download () (textacy.datasets.imdb.IMDB method), 47
download () (textacy.datasets.oxford_text_archive.OxfordTextArchive
method), 45
download () (textacy.datasets.reddit_comments.RedditComments
method), 43
download () (textacy.datasets.supreme_court.SupremeCourt
method), 37
download () (textacy.datasets.udhr UDHR method), 49
download () (textacy.datasets.wikimedia. Wikimedia
method), 38

153

textacy Documentation, Release 0.10.1

download () (textacy.lang_utils.Langldentifier full
method), 108

download () (fextacy.resources.concept_net.ConceptNet
method), 51 full

download () (textacy.resources.depeche_mood.DepecheMood
method), 55

download_file () (in module textacy.io.utils), 98 full

draw_semantic_network () (in module tex-
tacy.viz.network), 100

draw_termite_plot () (in module tex- full
tacy.viz.termite), 98

E full

entities () (in module textacy.extract), 60
entropy () (in module textacy.text_stats.basics), 117

G

entropy () (textacy.text_stats.api.TextStats property),
114 get (
ExtendedJSONEncoder (class in textacy.io.json), 91 get_.

F

filepath () (textacy.datasets.capitol_words.CapitolWordget_

property), 34

filepath () (textacy.datasets.supreme_court.SupremeCottet
get_.

property), 37

filepath() (textacy.datasets.wikimedia. Wikimedia
property), 38

filepath () (textacy.resources.concept_net.ConceptNet
property), 51

filepath () (textacy.resources.depeche_mood.DepecheMood
property), 55

property), 43

filter_terms_by_df () (in module tex- 9et_
tacy.vsm.matrix_utils), 82
filter_terms_by_ic() (in module tex-

tacy.vsm.matrix_utils), 82
(textacy.vsm.vectorizers.Group Vectorizer
method), 78

fit ()

fit () (textacy.vsm.vectorizers.Vectorizer method), 74 get_

fit_transform() (tex-
tacy.vsm.vectorizers.GroupVectorizer method), 9et_
79

fit_transform() (tex-
tacy.vsm.vectorizers.Vectorizer method), 9Jet_

74
flesch_kincaid_grade_level () (in module tex-
tacy.text_stats.readability), 118
flesch_kincaid_grade_level ()
tacy.text_stats.api. TextStats property), 115

(tex-

flesch_reading_ease () (in module tex- 9get_
tacy.text_stats.readability), 118
flesch_reading_ease () (tex- 9et_

tacy.text_stats.api. TextStats property), 115

_date_range

_date_range

_date_range

_date_range

_rating_range

get_
get_

get_
filepaths () (textacy.datasets.reddit_comments.RedditComments tacy.tm.topic_model.TopicModel

get_

get_

get_

get_

(tex-
tacy.datasets.capitol_words.CapitolWords
attribute), 33

(tex-
tacy.datasets.oxford_text_archive. OxfordTextArchive
attribute), 45

(tex-
tacy.datasets.reddit_comments.RedditComments
attribute), 43

(tex-
tacy.datasets.supreme_court.SupremeCourt
attribute), 36

(textacy.datasets.imdb.IMDB
attribute), 47

) (textacy.corpus.Corpus method), 22

antonyms () (tex-
tacy.resources.concept_net.ConceptNet
method), 51

char_weights () (in module tex-
tacy.augmentation.utils), 106

config () (in module textacy.utils), 109

doc_extensions () (in module tex-
tacy.spacier.doc_extensions), 25

doc_fregs () (in module tex-
tacy.vsm.matrix_utils), 80

doc_lengths () (in module tex-
tacy.vsm.matrix_utils), 81

doc_topic_matrix () (tex-

method),

85

emotional_ valence () (tex-

tacy.resources.depeche_mood.DepecheMood
method), 55
filename_from_url ()
tacy.io.utils), 98
filepaths () (in module textacy.io.utils), 97
filtered_topn_terms () (in module tex-
tacy.ke.utils), 69

(in module tex-

hyponyms () (tex-
tacy.resources.concept_net.ConceptNet
method), 52

information_content () (in module tex-

tacy.vsm.matrix_utils), 81
inverse_doc_fregs ()

tacy.vsm.matrix_utils), 80
kwargs_for_func () (in module textacy.utils),

111

(in module tex-

lang () (in module tex-
tacy.spacier.doc_extensions), 26
longest_subsequence_candidates () (in

module textacy.ke.utils), 68

154

Index

textacy Documentation, Release 0.10.1

get_main_verbs_of_sent () (in module tex-
tacy.spacier.utils), 31

get_meronymns () (tex-
tacy.resources.concept_net.ConceptNet
method), 52

get_meta () (in module tex-
tacy.spacier.doc_extensions), 26

get_n_sents () (in module tex-
tacy.spacier.doc_extensions), 26

get_n_tokens () (in module tex-
tacy.spacier.doc_extensions), 26

get_ngram_candidates () (in module tex-
tacy.ke.utils), 68

get_normalized_text () (in module tex-
tacy.spacier.utils), 31

get_objects_of_verb () (in module tex-
tacy.spacier.utils), 31

get_pattern_matching_candidates () (in
module textacy.ke.utils), 69

get_preview () (in module tex-

tacy.spacier.doc_extensions), 26
get_span_for_compound_noun () (in module tex-
tacy.spacier.utils), 31

get_span_for_verb_auxiliaries () (in mod-
ule textacy.spacier.utils), 32

get_subjects_of_verb () (in module tex-
tacy.spacier.utils), 31

get_synonyms () (tex-

tacy.resources.concept_net.ConceptNet
method), 52

get_term_freqgs () (in module tex-
tacy.vsm.matrix_utils), 80
get_tokens () (in module tex-

tacy.spacier.doc_extensions), 26
GroupVectorizer (class in textacy.vsm.vectorizers),
75
grps_list () (textacy.vsm.vectorizers.GroupVectorizer
property), 78
gulpease_index () (in module
tacy.text_stats.readability), 119
gulpease_index () (textacy.text_stats.api.TextStats
property), 115

tex-

gunning_fog_index () (in module tex-
tacy.text_stats.readability), 119
gunning_fog_index () (tex-

tacy.text_stats.api. TextStats property), 115

Fi

hyponyms () (fextacy.resources.concept_net.ConceptNet
property), 52

id_to_grp () (textacy.vsm.vectorizers.GroupVectorizer
property), 78

id_to_term (textacy.vsm.vectorizers.GroupVectorizer
attribute), 78

id_to_term() (textacy.vsm.vectorizers.Vectorizer
property), 74

identify_lang () (in module textacy.lang_utils), 108

identify_lang () (textacy.lang_utils.Langldentifier
method), 108

identify_topn_langs () (tex-
tacy.lang_utils.Langldentifier method), 108

idx (textacy.ke.sgrank.Candidate attribute), 66

IMDB (class in textacy.datasets.imdb), 46

init_pipeline () (textacy.lang_utils.Langldentifier
method), 108

insert_chars () (in module tex-
tacy.augmentation.transforms), 104
insert_word_synonyms () (in module tex-

tacy.augmentation.transforms), 103
is_acronym () (in module textacy.text_utils), 108
is_record () (in module textacy.utils), 110
is_word (textacy.augmentation.utils.AugTok attribute),

105
issue_area_codes (tex-

tacy.datasets.supreme_court.SupremeCourt

attribute), 37

issue_codes (textacy.datasets.supreme_court.SupremeCourt

attribute), 37

J

jaccard () (in module textacy.similarity), 121

K

keyword_in_context ()
tacy.text_utils), 108
KWIC () (in module textacy.text_utils), 109

L

lang (textacy.corpus.Corpus attribute), 20
LangIdentifier (class in textacy.lang_utils), 107
langs (textacy.datasets.udhr. UDHR attribute), 49
length (textacy.ke.sgrank.Candidate attribute), 66
levenshtein () (in module textacy.similarity), 122
1ix () (in module textacy.text_stats.readability), 119
1ix () (textacy.text_stats.api.TextStats property), 115
load () (textacy.corpus.Corpus class method), 24

(in module tex-

load_hyphenator () (in module tex-
tacy.text_stats.api), 115
load_spacy_lang() (in module tex-

tacy.spacier.core), 17
LRU_CACHE (in module textacy.cache), 111

M

make_doc_from_text_chunks () (in module tex-
tacy.spacier.utils), 31

Index

155

textacy Documentation, Release 0.10.1

make_spacy_doc () (in module textacy.spacier.core),

18

matches () (in module textacy.extract), 61
merge_spans () (in module textacy.spacier.utils), 31

meronyms () (textacy.resources.concept_net.ConceptNet

property), 52
metadata () (textacy.datasets.oxford_text_archive.OxfordTextArchivacy.text_stats.readability), 119

property), 45

module

textacy.
textacy.
textacy.
.cache, 111

textacy

textacy.
textacy.
textacy.
textacy.

44

textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.

textacy

textacy.
textacy.
textacy.
textacy.
.lang_utils, 107

textacy

textacy.
textacy.
textacy.
textacy.
.resources.concept_net, 50
textacy.
textacy.
textacy.
textacy.
.spacier.doc_extensions, 25
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.
textacy.

textacy

textacy

augmentation.augmenter, 101
augmentation.transforms, 103
augmentation.utils, 105

network, 123
preprocessing.normalize, 56
preprocessing.remove, 57
preprocessing.replace, 58

resources.depeche_mood, 53
similarity, 120
spacier.components, 30
spacier.core, 17

spacier.utils, 31
text_stats.api, 112
text_stats.basics, 116
text_stats.readability, 117
text_utils, 108
tm.topic_model, 83

utils, 109

viz.network, 100

mu_legibility_index ()

mu_legibility_index ()

textacy.viz.termite, 98
textacy.vsm.matrix_utils, 80
textacy.vsm.vectorizers, 70

most_discriminating_terms () (in module tex-

tacy.ke.utils), 69

(in module tex-

(tex-
tacy.text_stats.api.TextStats property), 115

n_chars () (in module textacy.text_stats.basics), 116

n_chars () (textacy.text_stats.api.TextStats property),
corpus, 19 114
datasets.capitol_words, 32 n_chars_per_word () (in module tex-
datasets.imdb, 46 tacy.text_stats.basics), 116
datasets.oxford_text_archive,n chars_per_word() (tex-

tacy.text_stats.api. TextStats property), 114

datasets.reddit_comments,42 n_docs (textacy.corpus.Corpus attribute), 20
datasets.supreme_court, 35 n_long_words () (in module tex-
datasets.udhr, 48 tacy.text_stats.basics), 116
datasets.wikimedia, 38 n_long_words () (textacy.text_stats.api. TextStats
extract, 59 property), 113
io.csv,91 n_monosyllable_words () (in module tex-
io.http, 95 tacy.text_stats.basics), 117
io.Jjson, 89 n_monosyllable_words () (tex-
io.matrix, 93 tacy.text_stats.api. TextStats property), 114
io.spacy, 93 n_polysyllable_words () (in module tex-
io.text, 88 tacy.text_stats.basics), 117
io.utils, 96 n_polysyllable_words () (tex-
.ke.scake, 66 tacy.text_stats.api.TextStats property), 114
ke.sgrank, 66 n_sents (textacy.corpus.Corpus attribute), 20
ke.textrank, 64 n_sents () (in module textacy.text_stats.basics), 117
ke.utils, 67 n_sents () (textacy.text_stats.api.TextStats property),
ke.yake, 65 113

n_syllables () (in module textacy.text_stats.basics),

117
n_syllables () (textacy.text_stats.api.TextStats prop-
erty), 114
n_syllables_per_word() (in module tex-
tacy.text_stats.basics), 116
n_syllables_per_word/() (tex-
tacy.text_stats.api. TextStats property), 114
n_tokens (textacy.corpus.Corpus attribute), 20
n_unique_words () (in module tex-

tacy.text_stats.basics), 116

n_unique_words () (textacy.text_stats.api.TextStats
property), 113

n_words () (in module textacy.text_stats.basics), 116

n_words () (textacy.text_stats.api.TextStats property),
113

name (fextacy.spacier.components.TextStatsComponent
attribute), 30

ngrams () (in module textacy.extract), 59

156

Index

textacy Documentation, Release 0.10.1

normalize_hyphenated_words () (in module tex-
tacy.preprocessing.normalize), 56
normalize_quotation_marks () (in module tex-
tacy.preprocessing.normalize), 56
normalize_repeating_chars () (in module tex-
tacy.preprocessing.normalize), 56
normalize_terms () (in module textacy.ke.utils), 67
normalize_unicode () (in module tex-
tacy.preprocessing.normalize), 56
normalize_whitespace () (in module
tacy.preprocessing.normalize), 57
noun_chunks () (in module textacy.extract), 61

O

open_sesame () (in module textacy.io.utils), 96

opinion_author_codes (tex-
tacy.datasets.supreme_court.SupremeCourt
attribute), 37

tex-

OxfordTextArchive (class in tex-
tacy.datasets.oxford_text_archive), 44
perspicuity_index () (in module tex-

tacy.text_stats.readability), 119
perspicuity_index () (tex-

tacy.text_stats.api. TextStats property), 115

pipeline (textacy.lang_utils.Langldentifier attribute),
108

pos (textacy.augmentation.utils.AugTok attribute), 105

pos_regex_matches () (in module textacy.extract),
61

preserve_case () (in module textacy.spacier.utils),
31

print_markdown () (in module textacy.utils), 109

R

read_csv () (in module textacy.io.csv), 91
read_http_stream () (in module textacy.io.http), 95
read_json () (in module textacy.io.json), 89
read_json_mash () (in module textacy.io.json), 90
read_spacy_docs () (in module textacy.io.spacy), 93
read_sparse_matrix () (in module tex-
tacy.io.matrix), 93
read_text () (in module textacy.io.text), 88

records () (textacy.datasets.wikimedia. Wikimedia

method), 39
RedditComments (class in tex-
tacy.datasets.reddit_comments), 42
remove () (textacy.corpus.Corpus method), 22
remove_accents () (in module tex-
tacy.preprocessing.remove), 57
remove_doc_extensions () (in module tex-
tacy.spacier.doc_extensions), 26
remove_punctuation () (in module tex-
tacy.preprocessing.remove), 57
replace_currency_symbols () (in module tex-
tacy.preprocessing.replace), 58
replace_emails () (in module tex-
tacy.preprocessing.replace), 58
replace_emojis () (in module tex-
tacy.preprocessing.replace), 58
replace_hashtags () (in module tex-
tacy.preprocessing.replace), 58
replace_numbers () (in module tex-
tacy.preprocessing.replace), 58
replace_phone_numbers () (in module tex-
tacy.preprocessing.replace), 58
replace_urls () (in module tex-
tacy.preprocessing.replace), 58
replace_user_handles () (in module tex-

tacy.preprocessing.replace), 58

S

save () (textacy.corpus.Corpus method), 24

scake () (in module textacy.ke.scake), 66

semistructured_statements () (in module tex-
tacy.extract), 63

sents_to_semantic_network () (in module tex-
tacy.network), 123

set_doc_extensions () (in module tex-
tacy.spacier.doc_extensions), 25

set_meta () (in module tex-
tacy.spacier.doc_extensions), 26

sgrank () (in module textacy.ke.sgrank), 66

smog_index () (in module tex-

tacy.text_stats.readability), 120
smog_index () (textacy.text_stats.api.TextStats prop-
erty), 115

records () (textacy.datasets.capitol_words.CapitolWords spacy_lang (textacy.corpus.Corpus attribute), 20

method), 34
records () (textacy.datasets.imdb.IMDB method), 48

speaker_names
tacy.datasets.capitol_words.CapitolWords

(tex-

records () (textacy.datasets.oxford_text_archive.OxfordTextArchivedttribute), 33

method), 46

records () (textacy.datasets.reddit_comments.RedditComments

method), 43

speaker_parties
tacy.datasets.capitol_words.CapitolWords
attribute), 33

(tex-

records () (textacy.datasets.supreme_court.SupremeCouP1it_records () (in module textacy.io.utils), 97

method), 37
records () (textacy.datasets.udhr UDHR method), 49

subject_verb_object_triples () (in module

textacy.extract), 62

Index

157

textacy Documentation, Release 0.10.1

substitute_chars () (in module tex-
tacy.augmentation.transforms), 104
substitute_word_synonyms () (in module tex-

tacy.augmentation.transforms), 103

SupremeCourt (class in tex-
tacy.datasets.supreme_court), 36

swap_chars () (in module tex-
tacy.augmentation.transforms), 105

swap_words () (in module tex-

tacy.augmentation.transforms), 103
synonyms () (textacy.resources.concept_net.ConceptNet

property), 52
syns (textacy.augmentation.utils.AugTok attribute), 105

T

termite_df_plot () (in module textacy.viz.termite),

99
termite_plot () (tex-
tacy.tm.topic_model. TopicModel method),

86
terms_list (textacy.vsm.vectorizers.GroupVectorizer
attribute), 78
terms_list () (textacy.vsm.vectorizers.Vectorizer
property), 74
terms_to_semantic_network () (in module tex-
tacy.network), 123
text (textacy.augmentation.utils.AugTok attribute), 106
text (textacy.ke.sgrank.Candidate attribute), 66
textacy.augmentation.augmenter
module, 101
textacy.augmentation.transforms
module, 103
textacy.augmentation.utils
module, 105
textacy.cache
module, 111
textacy.corpus
module, 19
textacy.datasets
module, 32
textacy.datasets
module, 46
textacy.datasets
module, 44
textacy.datasets
module, 42
textacy.datasets.
module, 35
textacy.datasets.
module, 48
textacy.datasets
module, 38
textacy.extract
module, 59

.capitol_words

.imdb
.oxford_text_archive
.reddit_comments
supreme_court

udhr

.wikimedia

textacy.io.csv
module, 91
textacy.io.http
module, 95
textacy.io.json
module, 89
textacy.io.matrix
module, 93
textacy.io.spacy
module, 93
textacy.io.text
module, 88
textacy.io.utils
module, 96
textacy.ke.scake
module, 66
textacy.ke.sgrank
module, 66
textacy.ke.textrank
module, 64
textacy.ke.utils
module, 67
textacy.ke.yake
module, 65
textacy.lang_utils
module, 107
textacy.network
module, 123
textacy.preprocessing.normalize
module, 56
textacy.preprocessing.remove
module, 57
textacy.preprocessing.replace
module, 58
textacy.resources.concept_net
module, 50
textacy.resources.depeche_mood
module, 53
textacy.similarity
module, 120
textacy.spacier.components
module, 30
textacy.spacier.core
module, 17
textacy.spacier.doc_extensions
module, 25
textacy.spacier.utils
module, 31
textacy.text_stats.api
module, 112
textacy.text_stats.basics
module, 116
textacy.text_stats.readability
module, 117

158

Index

textacy Documentation, Release 0.10.1

textacy.text_utils

module, 108
textacy.tm.topic_model

module, 83
textacy.utils

module, 109
textacy.viz.network

module, 100
textacy.viz.termite

module, 98
textacy.vsm.matrix_utils

module, 80
textacy.vsm.vectorizers

module, 70
textrank () (in module textacy.ke.textrank), 64
texts () (textacy.datasets.capitol_words.CapitolWords

method), 34

texts () (textacy.datasets.imdb.IMDB method), 47

tacy.tm.topic_model. TopicModel method),
85

top_topic_terms () (tex-
tacy.tm.topic_model.TopicModel method),
85

topic_weights () (tex-
tacy.tm.topic_model. TopicModel method),

86
TopicModel (class in textacy.tm.topic_model), 83
transform() (textacy.vsm.vectorizers.GroupVectorizer
method), 79
transform/()
method), 75

(textacy.vsm.vectorizers.Vectorizer

U

UDHR (class in textacy.datasets.udhr), 48
unpack_archive () (in module textacy.io.utils), 98
unzip () (in module textacy.io.utils), 97

texts () (textacy.datasets.oxford_text_archive.OxfordTextArchive

method), 45

texts () (textacy.datasets. reddit_comments.RedditComme(}tg lidate_and_clip

method), 43

texts () (textacy.datasets.supreme_court.SupremeCourt
method), 37

texts () (textacy.datasets.udhr. UDHR method), 49

texts () (textacy.datasets.wikimedia. Wikimedia
method), 39
TextStats (class in textacy.text_stats.api), 112
TextStatsComponent (class in tex-
tacy.spacier.components), 30
to_aug_toks () (in module tex-
tacy.augmentation.utils), 106
to_bag_of_terms () (in module tex-
tacy.spacier.doc_extensions), 277
to_bag_of_words () (in module tex-
tacy.spacier.doc_extensions), 28
to_bytes () (in module textacy.utils), 110
to_collection () (in module textacy.utils), 110
to_path () (in module textacy.utils), 110
to_semantic_network () (in module tex-
tacy.spacier.doc_extensions), 29
to_tagged_text () (in module tex-
tacy.spacier.doc_extensions), 26
to_terms_list () (in module tex-
tacy.spacier.doc_extensions), 26
to_tokenized_text () (in module tex-

tacy.spacier.doc_extensions), 26
to_unicode () (in module textacy.utils), 110
token_sort_ratio () (in module textacy.similarity),

122

top_doc_topics () (tex-
tacy.tm.topic_model.TopicModel method),
86

top_topic_docs () (tex-

range () (in module tex-
tacy.utils), 110

validate_set_members ()
tacy.utils), 110

vector_norms () (textacy.corpus.Corpus property),
23

Vectorizer (class in textacy.vsm.vectorizers), 70

vectors () (textacy.corpus.Corpus property), 23

(in module tex-

vocabulary_grps (tex-
tacy.vsm.vectorizers.GroupVectorizer at-
tribute), 78

vocabulary_terms (tex-
tacy.vsm.vectorizers.Group Vectorizer at-
tribute), 78

vocabulary_terms (tex-
tacy.vsm.vectorizers.Vectorizer attribute),

74

W

welghting () (textacy.vsm.vectorizers.Vectorizer prop-
erty), 75

weights () (textacy.resources.depeche_mood.DepecheMood

property), 55

wiener_sachtextformel () (in module tex-
tacy.text_stats.readability), 120
wiener_sachtextformel () (tex-

tacy.text_stats.api.TextStats property), 115
Wikimedia (class in textacy.datasets.wikimedia), 38
Wikinews (class in textacy.datasets.wikimedia), 40
Wikipedia (class in textacy.datasets.wikimedia), 39
word2vec () (in module textacy.similarity), 121
word_counts () (textacy.corpus.Corpus method), 23
word_doc_counts () (textacy.corpus.Corpus

method), 23

Index

159

textacy Documentation, Release 0.10.1

word_movers () (in module textacy.similarity), 121

words () (in module textacy.extract), 59

write_csv () (in module textacy.io.csv), 92

write_http_stream() (in module textacy.io.http),
95

write_Json () (in module textacy.io.json), 90

write_spacy_docs () (in module textacy.io.spacy),
94

write_sparse_matrix () (in module tex-
tacy.io.matrix), 93

write_text () (in module textacy.io.text), 89

ws (textacy.augmentation.utils.AugTok attribute), 106

Y

yake () (in module textacy.ke.yake), 65

160

Index

	features
	links
	maintainer
	contents
	Installation
	Quickstart
	API Reference
	Changes

	Python Module Index
	Index

